УДК 628.19: 628.394

АПРОБАЦИЯ МЕТОДА ОЦЕНКИ КАЧЕСТВА ВОДЫ ПО ВЕЛИЧИНЕ КОМБИНАТОРНОГО ИНДЕКСА ЗАГРЯЗНЕННОСТИ (НА ПРИМЕРЕ БУХТАРМИНСКОГО ВОДОХРАНИЛИЩА)

Е.В. Куликова

Апробирована новая для Верхне-Иртышского бассейна методика оценки качества воды по величине комбинаторного индекса загрязнения. По результатам расчета индекса загрязнения воды Бухтарминского водохранилища сделан вывод о возможности использования методики в регионе для определения класса качества воды по гидрохимическим показателям.

Вода — важнейшая составляющая природной среды. Многообразие хозяйственной деятельности человека отражается на состоянии водных объектов. Загрязняющие вещества попадают в водоемы с промышленными и хозбытовыми стоками, а также путем смыва загрязнителей с водосборных территорий. Состояние водных экосистем является показателем экологического здоровья региона. Достоверная оценка качественного состояния является залогом поддержания экологического благополучия водных экосистем.

В мировой практике существует множество методик для оценки состояния водных экосистем, с применением гидрохимических, гидробиологических показателей, комплексные методики с использованием гидрохимических и гидробиологических показателей, а также методики, в которых качество воды оценивается по состоянию различных групп животных (рыбы, земноводные, насекомые, и др.).

Методы и способы оценки качества поверхностных вод и степени их загрязненности по гидрохимическим показателям многочисленны и разнообразны. Это определяется задачами оценки, количеством и качеством исходной информации, способами обобщения аналитического материала и рядом других факторов. На территории СНГ наиболее часто используется метод сравнения значений показателей состава и свойств исследуемой воды с существующими нормативами. Также большое распространение получил метод расчета гидрохимического индекса загрязненности воды (ИЗВ).

Метод расчета комбинаторного индекса загрязненности разработан в 80-е годы прошлого столетия в Гидрохимическом институте

(г. Новочеркасск) группой исследователей, под руководством В.П. Емельяновой [1, 2]. Это метод интегральной оценки качества воды, по совокупности находящихся в ней загрязняющих веществ и частоты их обнаружения. В этом методе для каждого ингредиента на основе фактических концентраций рассчитываются баллы кратности превышения $\Pi \not \square K_{ep} - K_i$, повторяемости случаев превышения — H_i , а также общий оценочный балл — S_i :

$$K_i = C_i / \Pi / I K_i, \tag{1}$$

$$H_i = N_{IIJK_i} / N_i, \tag{2}$$

$$S_i = K_i \times H_i. \tag{3}$$

где C_i — концентрация в воде i -го ингредиента; $\Pi \not \square K_i$ — предельно допустимая концентрация i -го ингредиента для водоемов рыбохозяйственного назначения; $N_{\Pi \not \square K_i}$ — число случаев превышения $\Pi \not \square K$ по i -ому ингредиенту; N_i — общее число измерений i -го ингредиента.

Комбинаторный индекс загрязненности (*КИЗ*) рассчитывается как сумма общих оценочных баллов всех учитываемых ингредиентов. По величине комбинаторного индекса загрязненности устанавливается класс загрязненности воды. Этот метод сочетает дифференцированный и комплексный подход к оценке качества воды, именно поэтому данный метод и был выбран автором данной работы для апробации на водоемах Верхне-Иртышского бассейна.

Расчет комбинаторного индекса загрязненности проводился нами, начиная с 2004 г., на основании данных собственных исследований по Бухтарминскому водохранилищу. *КИЗ* рассчитывался для водоема в целом за год, а также отдельно для каждой из частей водохранилищ. Расчет проводился по 13 ингредиентам – водородному показателю, растворенному кислороду, биологическому потреблению кислорода (нормируются по «Правилам охраны поверхностных вод» [4]), хлоридам, сульфатам, кальцию, магнию, аммонийному азоту, аммиаку, нитритам, нитратам, меди и цинку (нормируются по «Обобщенному перечню предельно допустимых концентраций (*ПДК*) и ориентировочно безопасных уровней воздействия (ОБУВ) вредных веществ для воды рыбохозяйственных водоемов» [3]).

Методика предполагает определение качества воды в два условных этапа. Результат первого этапа – обобщенные характеристики загрязнен-

ности по каждому из учитываемых ингредиентов, второго — отнесение воды водоема к классу качества на основании величины $K\!U\!3$ и количества учитываемых ингредиентов.

Согласно первому этапу, выявлено, что для Бухтарминского водохранилища в целом свойственна загрязненность аммонийным азотом, которая от неустойчивой низкого уровня в 2004...2005 гг., повысилась до характерной среднего уровня в 2006 г. (табл. 1). Было отмечено наличие недостаточного количества кислорода от неустойчивого (2005 г.) до устойчивого (2004, 2006 гг.). Также отмечалась загрязненность нитритами, аммиаком, медью различной степени и уровня.

Таблица 1 Качество воды по обобщенным характеристикам загрязненности Бухтарминского водохранилища в 2004...2006 гг.

Часть	Vарактаристика загрязнанности ролги				
водохранилища	Характеристика загрязненности воды				
	2004				
озерная	ХЗ НУ по недостатку кислорода, НЗ НУ по аммо-				
-	нийному азоту, УЗ HV по нитритам				
озерно-речная	УЗ НУ по недостатку кислорода, НЗ НУ по аммоний-				
	ному азоту и нитритам				
горно-долинная	ХЗ НУ по недостатку кислорода, меди и нитритам, НЗ				
_	HY по аммонийному азоту				
горная	ХЗ СУ по меди				
В целом	УЗ НУ по недостатку кислорода, НЗ НУ по аммо-				
	нийному азоту, ХЗ НУ по нитритам, ХЗ СУ по меди				
	2005				
озерная	НЗ НУ по недостатку кислорода, БПК ₅ и аммонийно-				
1	му азоту				
озерно-речная	УЗ НУ по недостатку кислорода, НЗ НУ по аммоний-				
1 1	ному азоту, нитритам и $Б\Pi K_5$				
горно-долинная	НЗ <i>НУ</i> по аммонийному азоту и БПК ₅				
горная	НЗ НУ по недостатку кислорода, ХЗ НУ по аммоний-				
1	ному азоту, УЗ НУ по БПК5				
В целом	НЗ НУ по недостатку кислорода, БПК5 и аммоний-				
	ному азоту				
2006					
озерная	ХЗ НУ по недостатку кислорода, ХЗ СУ по аммоний-				
	ному азоту, УЗ НУ по меди, НЗ НУ по аммиаку				
озерно-речная					
	ХЗ СУ по аммонийному азоту				
горно-долинная	ХЗ НУ по аммонийному азоту и меди				
горная	X3 СУ по аммонийному азоту, УЗ HУ по меди и цин-				
_	ку, НЗ <i>НУ</i> по аммиаку				
В целом	УЗ НУ по недостатку кислорода и меди, ХЗ СУ по				
	аммонийному азоту, НЗ НУ по нитритам и аммиаку				
	v v ·				

Примечание: X3 — характерная загрязненность; Y3 — устойчивая загрязненность; H3 — неустойчивая загрязненность; E3 — единичная загрязненность; HV — низкий уровень загрязненности; CV — средний уровень загрязненности.

Имелись отличия по составу и количественному соотношению загрязнений в различных частях водохранилища и по годам исследований. Для озерной и озерно-речной частей свойственно невысокое содержание кислорода. Повышенное и высокое содержание аммонийного азота и нитритов отмечалось по всем частям. В горно-долинной и горной части в 2004 и 2006 годах фиксировалось загрязнение медью. В 2005 г. наблюдалось повышение величины $БПK_5$ и отсутствие загрязнения медью, по сравнению с 2004 и 2006 годами. В 2006 г. наблюдалось загрязнение аммиаком во всех частях водоема, кроме горно-долинной. Также в 2006 г. было отмечено загрязнение цинком (горная часть), которого в предыдущие годы не отмечалось.

По результатам второго этапа, вода Бухтарминского водохранилища в 2004 и 2006 гг. относилась к III классу — «загрязненная вода», разряду а) — «весьма загрязненная вода»; в 2005 г. — к II классу — «слабо загрязненная вода» (табл. 2). Озерная и озерно-речная части водохранилища из «слабо загрязненных вод» в 2004 г. перешли в класс «загрязненных» в 2006 г. Горно-долинная часть является наименее загрязненной на протяжении последних трех лет, а горная часть, наоборот, самой загрязненной (класс «загрязненных вод» в 2004 и 2006 гг.).

Таблица 2 Качество воды по комбинаторному индексу загрязненности Бухтарминского водохранилища в 2004...2006 гг.

Часть водохранилища	КИЗ	Класс и разряд качества воды	Характеристика состояния загрязненности воды
		2004	
озерная	17	II	слабо загрязненная
озерно-речная	14	II	слабо загрязненная
горно-долинная	23	II	слабо загрязненная
горная	27	IIIa	весьма загрязненная
В целом:	26	IIIa	весьма загрязненная
		2005	
озерная	16	II	слабо загрязненная
озерно-речная	18	II	слабо загрязненная
горно-долинная	15	II	слабо загрязненная
горная	19	II	слабо загрязненная
В целом:	16	II	слабо загрязненная
		2006	
озерная	26	IIIa	весьма загрязненная
озерно-речная	23	IIIa	весьма загрязненная

горно-долинная	19		слабо загрязненная
горная	25	IIIa	весьма загрязненная
В целом:	26	IIIa	весьма загрязненная

В целом можно сказать следующее: характеристика состояния загрязненности по отдельным ингредиентам на первом этапе получается достоверной, отражая качественное состояние воды по гидрохимическим показателям; отнесение к классам на втором этапе вполне объективно.

Таким образом, апробированная методика определения качества воды по величине комбинаторного индекса загрязнения может использоваться в водоемах Верхне-Иртышского бассейна для определения класса качества воды по гидрохимическим показателям.

СПИСОК ЛИТЕРАТУРЫ

- 1. Емельянова В.П., Данилова Г.Н., Колесникова Т.Х. Оценка качества поверхностных вод суши по гидрохимическим показателям // Гидрологические материалы. 1983. Т. 88. С. 120-129.
- 2. Никаноров А.М., Емельянова В.П. Комплексная оценка качества поверхностных вод суши // Водные ресурсы. -2005. -T.32. -№ 1. -C.61-69.
- 3. Обобщенный перечень предельно допустимых концентраций (ПДК) и ориентировочно безопасных уровней воздействия (ОБУВ) вредных веществ для воды рыбохозяйственных водоемов: Утв. Нач. Главрыбвода Минрыбхоза СССР В.А.Измайловым 09.08.90. М., 1990. 46 с.
- 4. Правила охраны поверхностных вод Республики Казахстан: Утв. Мин. Экологии и биоресурсов РК 14.06.94. прот. №13. Алма-Ата, 1994. 20 с.

РГП «Научно-производственный центр рыбного хозяйства» Алтайский филиал

СУ САПА БАҒАЛАУ ӘДІС МАҚЫЛДАУЫ ЛАСТЫҚ ҚИЫСТЫРУ КӨРСЕТКІШІ МӨЛШЕРІМЕН (БҰҚТЫРМА СУ ҚОЙМАСЫ ҰЛГІСІНДЕ)

Е.В. Куликова

Ластану көрсеткіш комбинаторлық мүшелерімен су сапа анықтама әдістемесі Жоғарғы-Ертіс бассейнға арналған жаңа макқылданған. Гидрохимиялық көрсеткіштермен су сапалары көрсеткіш есеп-қисабы нәтижелерімен су ластанулары су қоймасы Бұқтырма сынып анақтамасына арналған аймақ әдістеме қолдануы мүмкіншілігі туралы шығару істелген.