УДК 574:539.1.04

О.А. Шарипова *

НАКОПЛЕНИЕ РАДИОНУКЛИДОВ В ОРГАНИЗМАХ РЫБ ОЗЕРА БАЛХАШ

ВОДНАЯ РАДИОЭКОЛОГИЯ, РАДИОНУКЛИДЫ, ИЗОТОП, ПЕ-РИОД ПОЛУРАСПАДА, КОНЦЕНТРАЦИЯ, АККУМУЛЯЦИЯ

В данной статье приводятся материалы по накоплению стронция-90 и цезия-137 в организмах промысловых видов рыб озера Балхаш. Анализ результатов радиологических исследований в период 2002...2010 гг. показал, что содержание радионуклидов в рыбах озера не превышает допустимые нормы и, как пищевой продукт, рыба оз. Балхаш безопасна для человека.

Увеличение естественного радиационного фона в связи с развитием атомной энергетики, а также растущее воздействие человека на биосферу, обуславливает необходимость изучения последствий распространения радионуклидов и действия ионизирующих излучений на объекты окружающей среды и человека.

В настоящее время возрос интерес к проблемам водной радиоэкологии. Много работ отечественных и зарубежных ученых посвящено изучению радиоактивного загрязнения рыб. Одним из вопросов является определение степени поступления, накопления и перераспределения радиоактивных веществ в организмах рыб [3].

Радионуклиды, находящиеся в водоемах, делятся по происхождению на естественные (природные, существовавшие в природе изначально) и искусственные (техногенные). Наибольшую опасность в биологическом отношении представляют изотопы стронция (90 Sr) и цезия (137 Cs), так как являются близкими аналогами физиологически важных элементов – кальция и калия, имеют длительный период полураспада (28 лет у Sr и 30 у Cs), высокую энергию излучения (оба они β -излучатели, а Cs еще и γ -излучатель). Благодаря этому радионуклиды способны легко включаться в

^{*} Балхашский филиал ТОО КазНИИ рыбного хозяйсва, г. Балхаш 136

биологический круговорот и, мигрируя по пищевым цепям, попадать в организм человека, вызывая радиоактивное облучение [1, 2].

Вопросам накопления радиоактивных элементов рыбами оз. Балхаш не уделено должного внимания. Материалы радиологических исследований рыб оз. Балхаш публикуются впервые, в чем заключается актуальность и новизна выполненных работ.

Радиоактивные элементы (стронций-90 и цезий-137) определялись в мышечной ткани основных промысловых видов рыб по акватории оз. Балхаш за период 2002...2010 гг. Радиологические испытания проводились на спектрометрическом комплексе «Прогресс» согласно принятым методикам МИ КZ 07.00.00303-07.00.00304.2004. Результаты анализов представлены в табл. 1 и 2.

Таблица 1 Содержание 90 Sr в рыбах оз. Балхаш в отдельные годы (средние значения)

Год	Радиоактивность, Бк/кг по видам рыб (90 Sr)							
	сом	судак	жерех	вобла	сазан	лещ		
2002	13,3	9,5	5,5	5,7	7,0	8,4		
2003	10,4	13,9	14,5	8,6	25,4	7,6		
2004	32,7	29,8	32,8	42,3	27,6	46,6		
2007	14,0	20,9	18,6	10,8	21,0	34,7		
2010	17,3	17,1	20,8	17,8	19,3	20,3		

Таблица 2 Содержание $^{137}\mathrm{Cs}$ в рыбах оз. Балхаш в отдельные годы (средние значения)

Год	Радиоактивность, Бк/кг по видам рыб (137Cs)							
	сом	судак	жерех	вобла	сазан	лещ		
2002	1,5	2,7	2,7	3,1	3,8	4,3		
2003	8,0	5,8	6,7	5,5	5,7	5,4		
2004	2,8	2,8	3,5	3,5	4,2	3,9		
2007	6,9	3,4	6,7	8,0	5,3	3,1		
2010	3,3	4,1	3,8	3,7	3,3	3,9		

Накопление радиоактивных веществ органами и тканями рыб, а также распределение и выделение их зависит от целого ряда условий, основными из которых являются: химическая природа радиоизотопов и периоды их полураспада, концентрация радиоизотопов в воде, вид, возраст и физиологическое состояние рыб, экологические условия [3]. В связи с этим межгодовая динамика концентрации радиоизотопов имеет сложный характер (рис. 1).

Результаты радиологических исследований показали, что содержание стронция-90 в ихтиофауне озера варьирует в широком диапазоне 5,5...46,6 Бк/кг, причем максимальные значения концентрации отмечались в 2004 г. Начиная с 2007 г. наблюдается тенденция к снижению количества радиостронция в рыбах озера.

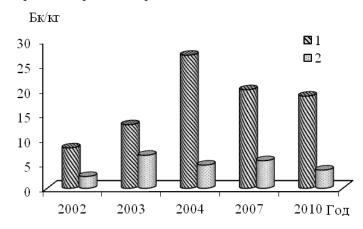


Рис. 1. Многолетняя динамика концентрации радионуклидов в рыбах озера Балхаш. 1 – стронций, 2 – цезий.

Аккумуляция цезия-137 в многолетнем аспекте происходит более равномерно и по абсолютным значениям содержание радионуклида лежит в пределах 1,5...8,0 Бк/кг. Некоторое увеличение концентрации радиоактивного цезия в исследованных экземплярах рыб зафиксировано в 2003 и 2007 гг. (рис. 1).

Анализ полученных данных свидетельствует о том, что наибольшее накопление стронция-90 характерно для леща: $46,6~\rm Kkr$ в $2004~\rm r$.; $34,7~\rm Kkr$ в $2007~\rm r$. и для воблы — $42,3~\rm Kkr$ в $2004~\rm r$. Приоритетными накопителями цезия- $137~\rm B$ $2004~\rm u$ $2007~\rm r$ г. были особи воблы и сома, концентрация радиоизотопа находилась в пределах $6,9...8,0~\rm Kkr$.

В пространственном отношении по акватории озера максимальное аккумулированное количество изотопа стронция 52,8...84,2 Бк/кг обнаружено в образцах рыб Восточного Балхаша: Ультарахты, Коржун. Высокая накопительная способность стронция 52,2...70,0 Бк/кг характерна для отдельных особей рыб, выловленных в районах Западного Балхаша: Бурыбайтал, Чиганак, Майтан, Б. Орлинная. Максимальное содержание радиоцезия 14,9...19,0 Бк/кг обнаружено в организмах рыб в районах Мын-Арала (Западный Балхаш) и Ультарахты (Восточный Балхаш).

Как отмечалось ранее, концентрация радиоактивных элементов в рыбах зависит от многих факторов, в том числе от химической природы радиоизотопов и взаимодействия с другими компонентами водной среды. Стронций-90, являясь химическим аналогом кальция, откладывается в костной ткани рыб. Повышение содержания нерадиоактивного кальция в водоеме ведет к снижению накопительной способности радиостронция рыбами.

Корреляционная зависимость аккумуляции стронция-90 в рыбах от содержания кальция в воде характерна для нашего озера. Проведенные исследования показали, что в Восточном Балхаше, где концентрация кальция в воде на 27 % ниже, чем в Западном, содержание радиоактивного стронция в организмах рыб на 13,8 % больше, чем в образцах рыб, выловленных в западной части озера. По многолетним данным, в зависимости от типа питания, приоритетными накопителями стронция-90 являются бентофаги, в процентном выражении его содержание составляет 39 % (рис. 2).

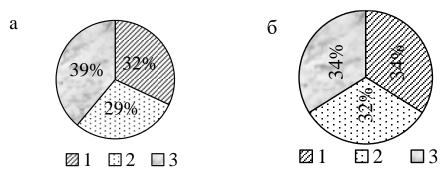


Рис. 2. Процентное соотношение накопления стронция-90 (a) и цезия-137 (б) в рыбах оз. Балхаш (по типу питания). 1 – хищники, 2 – смешанный тип, 3 – бентофаги.

Несколько ниже накопительная способность радиостронция у хищников -32 %. Наименее подвержены аккумуляции данного изотопа рыбы со смешанным типом питания -29 %. Результаты анализов свидетельствуют, что накопление цезия-137 в организмах рыб не зависит от типа питания.

Для сравнения приведем литературные данные радиологических исследований рыб других водоемов Казахстана. В организмах рыб водоемов Зайсан-Иртышского бассейна накопление радиоцезия составляет 1,6...4,7 Бк/кг, что соизмеримо с аналогичными показателями для оз. Балхаш. Концентрация радиостронция в рыбах водоемов бассейна лежит в интервале 3,3...20,8 Бк/кг, что в 1,7...2,5 раза ниже, чем в ихтиофауне озера Балхаш. В Зайсан-Иртышском бассейне аккумулированное ко-

личество цезия-137 у мирных видов рыб в 1,2...1,6 раза выше, чем у хищников, стронция-90, наоборот, в 1,2...1,3 раза ниже [4]. Наши исследования водохранилищ Нура-Сарысуйского бассейна и водоема Кененбай Улытауского района показали, что в рыбах Кенгирского водохранилища радиоактивные стронций и цезий накапливаются в количестве 20...22 и 1...2 Бк/кг соответственно. Содержание стронция-90 и цезия-137 в мышцах особей различных видов водоема Кененбай Улытауского района в многолетнем аспекте варьировало в пределах 1...61 Бк/кг, максимальные значения характерны для эврифагов. Таким образом, по степени накопления радионуклидов в рыбах водоемы Казахстана имеют некоторые отличия, что объясняется специфическими физико-химическими свойствами водной среды.

Следует отметить, что изотопы цезия и стронция накапливаются во всех видах рыб оз. Балхаш, но их содержание в представленных образцах за период исследований не превышало допустимые нормы (стронций – $100 \, \text{Бк/кг}$, цезий – $130 \, \text{Бк/кг}$) [5].

Как известно, кормовые организмы способны накапливать радионуклиды до концентраций, в сотни и тысячи раз превышающие их значения в окружающей воде [6]. Поэтому поступление изотопов с загрязненной пищей в организм рыб может быть значительным даже при минимальной радиации в воде.

Резюмируя вышеизложенное, можно сделать следующие выводы:

- Накопление радионуклидов происходит в мышечной ткани всех видов рыб озера. Наиболее загрязнены стронцием-90 бентофаги. Аккумуляция цезия-137 не зависит от типа питания.
- Многолетняя динамика аккумуляции радиоизотопов имеет сложный характер. Максимальные значения для радиостронция зафиксированы в 2004 г., а с 2007 г. наметилась тенденция к снижению. Некоторое увеличение содержания радиоцезия в рыбах наблюдалось в 2003 и 2007 гг.
- В пространственном отношении в большей степени радиоактивными являются рыбы, обитающие в Восточном Балхаше.
- Как пищевой продукт рыба оз. Балхаш безопасна, так как за весь период исследований не было отмечено превышение нормативов по содержанию радиоактивных элементов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Василенко И.Я., Василенко О.И. Радиоактивный цезий // Энергия: экономика, техника, экология. М.: 2001. № 7. С. 16-22.
- 2. Василенко И.Я., Василенко О.И. Стронций радиоактивный // Энергия: экономика, техника, экология. М.: 2002. № 4. С. 26-32.
- 3. Буянов Н.И., Емельянова Н.Г., Макеева А.П., Рябов И.Н. Накопление и выведение искусственных радионуклидов организмами пресноводных рыб // Экология. 1983. № 4. С. 26-31.
- 4. Куликова Е.В. Накопление радиоактивных изотопов в организмах рыб из водоемов Зайсан-Иртышского бассейна. // Гидрометеорология и экология. 2011. № 1. С. 156-160.
- 5. СП № 611 «Санитарно-эпидемиологические требования к пищевой продукции». Астана: Министерство здравоохранения РК, 06.08.2010.
- 6. Федорова Г.В. О радиоактивном загрязнении рыб // Рыбное хозяйство. -1962. № 3. C. 15-19.

Поступила 31.10.2012

О.А. Шарипова

БАЛҚАШ КӨЛІНДЕГІ БАЛЫҚТАРДЫҢ АҒЗАСЫНДАҒЫ РАДИОНУКЛИДТЕРДІҢ ЖИНАҚТАЛУЫ

Бұл мақалада Балқаш көліндегі кәсіптік балықтар ағзасындағы стронций-90 және цезий-137 жинақталуы туралы берілген. 2002...2010 жылдардағы радиологиялық зерттеу нәтижелері бойынша көлдегі балықтардың ағзасындағы радионуклидтер шекті мөлшерден аспайды және Балқаш көліндегі балық тағам ретінде әбден жарамды.