УДК 551.579

К ОЦЕНКЕ ЧУВСТВИТЕЛЬНОСТИ НЕКОТОРЫХ АГРОКЛИМАТИЧЕСКИХ ПОКАЗАТЕЛЕЙ УВЛАЖНЕНИЯ ПРИМЕНИТЕЛЬНО К АТМОСФЕРНЫМ ЗАСУХАМ НА ТЕРРИТОРИИ КАЗАХСТАНА

Ж.К. Ахмадиева

Для оценки режима увлажнения основных земледельческих районов Казахстана рассчитывался комплекс агроклиматических показателей (индексов) увлажнения Д.И. Шашко, Г.Т. Селянинова, Д.А. Педя и Н.Н. Иванова. Оценка проводилась во взаимосвязи с урожайностью зерновых культур.

Продовольственная безопасность в свете глобального потепления климата становится важным и приоритетным направлением политики многих стран мира, в том числе и Казахстана. В последние годы развитие агропромышленного комплекса в республике характеризуется положительной динамикой. Однако, доля сельского хозяйства во внутреннем валовом продукте (ВВП) в пересчете на 1 сельского жителя остается ниже этого показателя в других странах, а именно в 1,8 раза, чем в России, в 7,5 раза, чем в Германии и Южной Корее, в 43 раза, чем в Бельгии [3].

Республика Казахстан имеет достаточные земельные ресурсы и природные возможности для зернопроизводства и может обеспечить зерном не только себя, но и соседние государства. В Северном Казахстане, основном районе размещения посевов зерновых культур, благодаря особенностям климата выращивается яровая пшеница твердых и сильных сортов с высоким содержанием клейковины. Такое зерно высоко ценится хлебопекарной промышленностью и является высококонкурентным товаром на мировом рынке. Казахстан экспортирует зерно пшеницы в страны Центральной Азии, Ближнего Востока, Африки. Несмотря на введение квот Еврокомиссией, высококачественное казахстанское зерно имеет устойчивый спрос и на территории государств-членов Европейского Сообщества. Для роста объемов экспорта зерна у республики имеются большие перспективы: Китай и Иран — большие рынки сбыта, Киргизия, Узбекистан, Туркмения — практически не производят свою пшеницу.

Основные площади посевов зерновых культур в Казахстане (более 71,3 %), заняты яровой пшеницей и располагаются в Северном Казахстане (Акмолинская, Северо-Казахстанская, Костанайская, Павлодарская области). В Южном Казахстане (Алматинская, Южно-Казахстанская, Жамбылская и Кзылординская области) выращиваются как ранние яровые, так и озимые зерновые культуры, которые, в основном, используются для местных нужд.

Особенностью зернопроизводства в Казахстане является сильная зависимость урожайности зерновых культур от метеорологических условий. По некоторым оценкам, до 60...70 % рисков в земледелии связаны с динамикой погоды и климата. В формировании урожая зерновых культур фактор увлажнения является определяющим как для Северного так и для Южного Казахстана [1, 2]. Например, в Северном Казахстане фактор влаги определяет колебания урожайности яровой пшеницы до 80 %. В перспективе, в условиях дальнейшего потепления глобального и регионального климата, увеличится повторяемость и интенсивность атмосферной и почвенной засух, губительно действующих на урожайность зерновых культур.

Для управления рисками, связанными с засухами, своевременной адаптации зернопроизводства к изменению климата необходим регулярный мониторинг засух в земледельческих районах. В целях мониторинга часто используются показатели увлажненности (или индексы засухи), которые являются функцией атмосферных осадков. В выполняемых ранее исследованиях, показатели увлажненности оценивались, в основном, каждый в отдельности, что приводит, по мнению автора, к значительным погрешностям при оценке засух.

В настоящей работе, для оценки режима увлажнения земледельческих районов Казахстана, использовались агроклиматические показатели (индексы) увлажнения Д.И. Шашко, Г.Т. Селянинова, Д.А. Педя и Н.Н. Иванова. Они рассчитывались по 92 метеорологическим станциям в двух временных отрезках: 1971...2007 гг. (Г.Т. Селянинов, Д.А. Педь, Н.Н. Иванов) и 1986...2007 гг. (Д.И. Шашко, Г.Т. Селянинов, Д.А. Педь, Н.Н. Иванов).

Гидротермический коэффициент (ГТК) Селянинова, самый распространенный из вышеперечисленных показателей, рассчитывался как:

$$\Gamma TK = \frac{\sum r}{0, 1 \sum t},\tag{1}$$

где $\sum r$ — сумма осадков за вегетационный период (мм); $\sum t$ — сумма температур за тот же период (°C).

Индекс Педя рассчитывался как разность стандартизованных аномалий температуры воздуха и атмосферных осадков:

$$S_i(\tau) = \frac{\Delta T}{\sigma_T} - \frac{\Delta R}{\sigma_R} \,, \tag{2}$$

где ΔT и ΔR – аномалии среднегодовых значений температуры воздуха (°C) и годовых сумм атмосферных осадков (мм); σ_T , σ_R – среднеквадратические отклонения среднегодовой температуры воздуха (°C) и годовой суммы осадков (мм).

Показатель увлажнения Иванова рассчитывался как:

$$K = \frac{\overline{R}}{\overline{E}_0},\tag{3}$$

где \overline{R} – сумма осадков за год, мм; \overline{E}_0 – испаряемость за год, мм.

Для расчета испаряемости была использована формула Тюрка с поправочным коэффициентом Е.Н. Вилесова:

$$E_0 = 2,33 \left[300 + 25T + 0,05T^2 \right],\tag{4}$$

где T – средняя годовая температура воздуха, °C.

Показатель увлажнения Шашко рассчитывался по формуле:

$$K = \frac{R}{\sum d},\tag{5}$$

где R — сумма осадков за вегетационный период, мм; $\sum d$ — сумма суточных дефицитов влажности воздуха за вегетационный период, мб.

Для сопоставимости показателей увлажнения их рассчитанные значения были приведены к стандартной форме. Для показателей Шашко, Селянинова и Иванова, также как и для Педя, были рассчитаны значения среднеквадратических отклонений и стандартизированное отклонение для каждого года. При этом к годам с атмосферной засухой были отнесены годы, на которые в первом варианте указывали, по крайней мере, 2 показателя, а во втором — 3. С учетом охвата засухой территории при анализе учитывались только весьма обширные засухи, которые охватывали не меньше 30 % исследуемой территории.

Для оценки интенсивности засух были использованы следующие величины:

а) для индекса Педя

 $1,0 < x \le 2,0 -$ слабая засуха,

 $2,0 < x \le 3,0 -$ средняя засуха,

x > 3.0 – сильная засуха.

б) для показателей Шашко, Селянинова и Иванова

 $-1.0 < x \le -0.5$ — слабая засуха,

 $-1.5 < x \le -1.0$ – средняя засуха,

 $x \le -1,5$ — сильная засуха,

где х – стандартизированное отклонение соответствующего показателя.

В первом варианте анализа засух (3 показателя) за период 1971...2007 гг. в Северном Казахстане выявлено 11 случаев с засухой. Из них 1 случай с сильной засухой в 1975 г. (9,1 %), 2 — средней засухой в 1991 и 1997 гг. (18,2 %) и 8 — слабой засухой в 1974, 1978, 1981, 1982, 1983, 1989, 1997, 2004 гг. (72,7 %). В Южном Казахстане за этот период выявлено 7 случаев со слабой засухой (1971, 1982, 1983, 1997, 2001, 2005, 2007 гг.). Во втором варианте (4 показателя) за период 1986...2007 гг. выявлено 7 случаев с засухой в Северном Казахстане и 5 — в Южном Казахстане. По интенсивности засухи распределились следующим образом: в Северном Казахстане средние засухи наблюдались в 1991, 1997, 1998 гг. (42,8 % всех случаев с засухой), слабые — в 1988, 1989, 1997, 2004 гг. (57,1 %); в Южном Казахстане — средние засухи в 1995, 2000 гг. (40 %), слабые — в 1989, 2001, 2007 гг. (60 %). В этом варианте расчета случаев сильных засух не обнаружено.

Анализ многолетней урожайности зерновых культур в исследуемых районах показал, что чувствительность агроклиматических показателей увлажненности к засухам по этим градациям оказалась низкой. Например, на территории Северного Казахстана в 1984, 1995 и 1998 годах наблюдались сильные засухи, которые нанесли большой ущерб зернопроизводству. Урожайность яровой пшеницы в эти годы была очень низкой и составляла соответственно 5,5 ц/га, 5,5 ц/га и 4,7 ц/га. Однако рассчитанные агроклиматические показатели в эти годы засухи не выявили.

Для усиления чувствительности к засухам агроклиматических показателей увлажнения Шашко, Селянинова и Иванова их градации были изменены:

 $-0.5 < x \le 0$ — слабая засуха,

 $-1,0 < x \le -0,5 -$ средняя засуха,

 $x \le -1,0$ — сильная засуха.

За период 1971...2007 гг. (3 показателя) после изменения градаций чувствительность агроклиматических показателей к засухам увеличилась. По Северному Казахстану за этот период выявлено 18 случаев с засухой, из них 27,8 % составили сильные засухи (1975, 1981, 1991, 1995, 1998 гг.),

27,8 % – средние (1974, 1981, 1983, 1997, 2004 гг.) и 44,4 % – слабые (1971, 1976, 1978, 1986, 1988, 1989, 2005, 2007 гг.). В Южном Казахстане за этот период в варианте этого расчета также выявлено 18 случаев с засухой: 22,2 % – сильные (1975, 1977, 1991, 1995 гг.), 55,5 % – средние (1971, 1974, 1982, 1983, 1986, 1989, 2000, 2001, 2005, 2007 гг.), 22,2 % – слабые (1985, 1995, 2004, 2006 гг.).

За период 1986...2007 гг. (4 показателя) в Северном Казахстане по измененным критериям выявлено 11 случаев с засухой, в том числе: 27,3 % – сильные засухи (1991, 1995, 1998 гг.), 27,3 % – средние (1989, 1997, 2004 гг.) и 45,4 % – слабые (1986, 1996, 2005, 2006, 2007 гг.). Чувствительность агроклиматических показателей к засухам после изменения их градаций оказалась достаточно высокой на территории Северного Казахстана и хорошо коррелировалась с урожайностью яровой пшеницы, которая в 1991, 1995, 1998 гг. не превышала 5,5 ц/га, в 1997 г. – 8,4 ц/га при среднемноголетней величине 9,3 ц/га. В годы со средней засухой урожайность яровой пшеницы не превышала 7,0...8,0 ц/га. Также было выявлено, что слабые засухи здесь не оказывают существенного влияния на урожайность яровой пшеницы.

В Южном Казахстане за период 1986...2007 гг. обнаружено 10 случаев с засухой, из них 20 % составляли сильные засухи (1991, 1995 гг.), 50 % – средние (1989, 2000, 2001, 2005, 2007 гг.) и 30 % – слабые (1999, 2004, 2006 гг.). Вместе с тем, связь между выявленной засухой и урожайностью озимой пшеницы оказалась достаточно низкой. Только в 1995 г. урожайность озимой пшеницы была низкой и составила 7,9 ц/га при среднемноголетнем значении 11,6 ц/га. В остальные годы с выявленными засухами урожайность озимой пшеницы была в пределах среднемноголетних значений и составляла 11...14 ц/га.

Корреляционный анализ урожайности зерновых культур с агроклиматическими показателями выявил прямую линейную функциональную связь (таблица). Исключением является индекс Педя, который указывает на обратную связь с урожайностью зерновых культур.

Наиболее тесная связь между агроклиматическими показателями и урожайностью зерновых культур выявлена в Северном Казахстане в Северо-Казахстанской и Костанайской областях, в Южном Казахстане — Алматинской области. Наиболее высокие коэффициенты корреляции в Северном Казахстане приходятся на показатели Шашко и Селянинова, в Южном Казахстане — Селянинова и Иванова.

Таблица Коэффициенты корреляции среднеобластной урожайности пшеницы с агроклиматическими показателями увлажнения на территории Казахстана

Административная	Показатель увлажненности			
область	Педя	Селянинова	Шашко	Иванова
Северо-Казахстанская	-0,51	0,62	0,66	0,60
Акмолинская	-0,41	0,55	0,49	0,49
Костанайская	-0,52	0,67	0,71	0,64
Павлодарская	-0,21	0,24	0,37	0,33
Алматинская	-0,33	0,57	0,63	0,63
Южно-Казахстанская	0,25	0,51	0,29	0,36
Жамбылская	-0,17	0,49	0,42	0,49

Более тесная взаимосвязь агроклиматических показателей с урожайностью зерновых культур в Северном Казахстане объясняется, в первую очередь, тем, что при расчетах показателей увлажненности учитывались атмосферные осадки теплого периода года. Обычно здесь в годы, обеспеченные летними осадками, урожаи пшеницы не опускаются ниже 9,0...10,0 ц/га. В Южном Казахстане, где выращиваются в основном озимые зерновые культуры, на формирование урожая влияют, в большей степени, осадки осенне-зимнего периода. Вследствие этого, здесь отсутствует тесная связь между показателями увлажненности и урожайностью зерновых культур. Низкую корреляционную связь в Южном Казахстане также можно объяснить тем, что большая часть посевов зерновых размещается на поливных землях (Жамбылская и Южно-Казахстанская области).

На основании проведенных исследований можно сделать вывод, что используемые агроклиматические показатели увлажненности более эффективны при оценке засух в условиях Северного Казахстана. В условиях Южного Казахстана для мониторинга засух желательно использовать другие показатели увлажненности.

СПИСОК ЛИТЕРАТУРЫ

- Агрометеорологическая и агроэкологическая информация в поддержку зернопроизводства в Северном Казахстане (информация для лиц, участвующих в производстве и реализации зерна, а также определяющих экономическую и природоохранную политику в сельском хозяйстве Казахстана) // Под ред. М.К. Баекеновой, Л.В. Лебедь. – Алматы, 2006. – 81 с.
- 2. Белобородова Г.Г. Влагообеспеченность яровых колосовых культур на богарных землях юго-востока Казахстана. // Тр. КазНИГМИ. 1965. Вып. 24. С. 120-132.

3. Государственная программа развития сельских территорий Республики Казахстан на 2004...2010 гг. Астана, 2003. – 83 с.

РГП «Казгидромет», г. Алматы

ҚАЗАҚСТАН АУМАҒЫНДАҒЫ АТМОСФЕРАЛЫҚ ҚҰРҒАҚШЫЛЫҚҚА ҚАТЫСТЫ ЫЛҒАЛДАНУДЫҢ БІРНЕШЕ АГРОКЛИМАТТЫҚ КӨРСЕТКІШТЕРІНІҢ СЕЗІМТАЛДЫҒЫН БАҒАЛАУ ЖӨНІНДЕ

Ж.К. Ахмадиева

Қазақстанның негізгі егіншілік аумақтарының ылғалдану режімін бағалау үшін Д.И. Шашконың, Г.Т. Селяниновтың, Д.А. Педяның және Н.Н. Ивановтың ылғалданудың агроклиматтық көрсеткіштері (индекстері) есептелді. Бағалау астықтың түсімділігімен тығыз байланыста жүргізілді.