УДК 502/504:591.524.12(282.256.162.26)

ОЦЕНКА ЭКОЛОГИЧЕСКОГО СОСТОЯНИЯ УСТЬ-КАМЕНОГОРСКОГО ВОДОХРАНИЛИЩА ПО ПОКАЗАТЕЛЯМ ЗООПЛАНКТОНА

А.А. Евсеева

В статье представлены материалы исследований зоопланктона Усть-Каменогорского водохранилища в 2005...2010 гг. Приведен список таксономического состава, количественные показатели развития зоопланктона в годы исследований. Дана оценка экологического состояния водоема по структурно-функциональным показателям зоопланктона.

Усть-Каменогорское водохранилище создано в 1952 г. в целях развития энергетики, водного транспорта и водоснабжения. Расположено в Восточно-Казахстанской области. Занимает межгорную долину каньонного типа протяженностью 71 км, площадью 37 км², объёмом 0,65 км³. Ширина водоема 400...750 м, наибольшая ширина 1200 м. Водохранилище глубоководное, средняя глубина при полном проектном наполнении составляет 17 м. Глубины в продольном направлении затопленного русла нарастают от 6 м в зоне подпора до 46 м у плотины.

Усть-Каменогорское водохранилище характеризуется большой проточностью с крайне неустойчивым обменом водных масс: 27...41 раз в год (в среднем, 23 раза). Регулирование стока водохранилища недельно-суточное.

По морфометрическим, гидрологическим и температурным характеристикам водоем условно разграничивается на три отличающиеся между собой части: верхнюю – от зоны подпора Бухтарминской ГЭС (БГЭС) до Пионерского мостика (железнодорожный мост через водохранилище); среднюю – от Пионерского мостика до залива Масьяновского; приплотинную (нижнюю) – от залива Масьяновский до плотины УК ГЭС.

Верхняя часть вблизи плотины БГЭС и г. Серебрянска характеризуется наличием небольшого течения, малыми глубинами и самой низкой температурой воды. На биотопы и биоценозы средней части вблизи п. Огневка значительное влияние оказывает добыча полиметаллических руд на Огневском руднике.

Усть-Каменогорское водохранилище — холодноводный водоем, его прогрев определяется поступающими водными массами из нижних и средних слоев Бухтарминского водохранилища. В летний период они не прогреваются выше 8,0 °С. В связи с этим, даже в период максимального прогрева температура в наиболее прогреваемой средней части водоема не превышает 22,0 °С на поверхности. Усть-Каменогорское водохранилище является ярким примером воздействия гидрологического режима на гидробиологические показатели. Особенности водоема — значительный водообмен, холодноводность, почти полное отсутствие литорали [10].

Материал и методика. Исследования зоопланктона Усть-Каменогорского водохранилища проводили в июне-июле 2005...2006 гг. в составе маршрутных экспедиций Алтайского филиала «Научно-производственного центра рыбного хозяйства», в июне-августе 2009...2010 гг. в составе экспедиций Восточно-Казахстанского Центра гидрометеорологии. Всего за указанный период было обследовано 7 станций (19 створов), отобрано и обработано 78 количественных проб зоопланктона. Карта-схема станций отбора проб представлена на рис. 1.

Рис. 1. Карта-схема Усть-Каменогорского водохранилища со станциями отбора проб.

Количественные пробы зоопланктона отбирались в соответствии с «Методическим пособием при гидробиологических рыбохозяйственных исследованиях водоемов Казахстана (планктон, зообентос)» [16]. Определение различных групп организмов вели по соответствующим определителям [2, 4, 5, 7, 8, 9]. Для расчета биомассы использовали уравнения, при-

веденные в работе Е.В. Балушкиной и Г.Г. Винберга [1]. Уровень продуктивности определяли по «шкале трофности» С.П. Китаева [3]. Органическое загрязнение водной толщи оценивали по методу Пантле и Бука в модификации Сладечека [13, 14, 15]. Оценку качества вод проводили в соответствии с «Комплексной экологической классификацией качества поверхностных вод суши по О.П. Оксиюк и В.Н. Жукинскому» [6]. Также использовали метод оценки загрязненности пресноводных экосистем по показателям развития зоопланктонных сообществ, который был разработан на основе результатов комплексных исследований на водоемах с различной загрязненностью в Российской Федерации [11]. Для определения структурированности гидробиоценозов рассчитывали индекс видового разнообразия Шеннона-Уивера (по численности) [17].

Таксономический состав. В 2005...2010 гг. в составе зоопланктона Усть-Каменогорского водохранилища было обнаружено 38 таксонов, из них: коловратки — 19 видов, веслоногие рачки — 6, ветвистоусые рачки — 13. Наиболее часто встречались из коловраток Polyartha dolichoptera, Asplanchna priodonta, Kellicottia longispina; из копепод — Cyclops vicinus и Mesocyclops leukarti. Таксономический состав зоопланктона Усть-Каменогорского водохранилища представлен в табл. 1.

Таблица 1 Таксономический состав и частота встречаемости зоопланктона Усть-Каменогорского водохранилища, (%)

Таксоны	Сапробность	Частота встречаемости, (%)				
1 аксоны	Сапрооность	2005	2006	2009	2010	
	Rotifera					
Rotifera gen sp.	-	33	83	3	4	
Notommata saccigera Ehrenberg	0	-	67	-	-	
Eothinia sp.	-	-	-	3	11	
Trichocerca sp.	-	-	17	-	-	
Synchaeta sp.	-	17	-	-	-	
S. pectinata Ehrenberg	β-о	33	-	-	-	
S. kitina Rousselet	о-β	-	17	3	-	
S. tremula (Muller)	-	-	17	-	-	
Polyarthra dolichoptera Idelson	о-β	83	100	30	70	
Bipalpus hudsoni (Imhof)	0	-	17	9	-	
Asplanchna priodonta Gosse	о-β	58	100	64	71	
Lecane sp.	-	-	-	-	4	
L. (Muller)	о-β	8	50	-	-	
Keratella cochlearis (Gosse)	β-о	58	33	39	30	
K. quadrata (Muller)	о-β	58	33	76	48	

T	C	Частота встречаемости, (%)			
Таксоны	Сапробность	2005	2006	2009	2010
Kellicottia longispina (Kellicott)	0	92	83	88	67
Notholca acuminata (Ehrenberg)	-	17	33	-	-
Conochilus unicornis (Rousselet)	O	8	-	36	15
Filinia longiseta (Ehrenberg)	β-α	8	-	-	-
C	opepoda				
Neutrodiaptomus incongruens (S. Poppe)	-	8	-	24	7
Macrocyclops albidus (Jurine)	-	17	-	6	4
Cyclops vicinus (Uljanine)	-	58	83	94	89
Mesocyclops leuckarti (Claus)	-	50	67	52	100
Thermocyclops crassus (Fischer)	-	25	-	-	4
Harpacticoida gen sp.	-	-	-	9	4
C	ladocera				
Sida crystallina (Muller)	O	-	-	6	-
Diaphanosoma brachyurum (Lievin)	о-β	50	-	58	37
Ceriodaphnia quadrangula (Muller)	β	8	-	9	7
Daphnia sp.	-	-	-	-	4
D.cucullata (Sars)	β	33	-	30	37
Daphnia longispina (Muller)	β	18	4	-	-
Chydorus schaericus (Muller)	о-β	25	33	18	22
Alona quadrangularis (Muller)	о-β	-	-	3	-
Graptoleberis testudinaria (Fischer)	-	-	-	3	-
Acroperus harpae (Baird)	X-O	17	-	3	-
Macrotrix laticornis (Jurine)	β	-	-	18	4
Bosmina longirostris (Muller)	о-β	33	33	39	63
Leptodora kindti (Focke)	о-β	8	-	12	22
Всего количество таксонов в год		24	17	26	23

Количественные показатели. В 2005...2006 гг. средние значения биомассы зоопланктона варьировали в пределах 205...973 мг/м³, класс продуктивности: самый низкий – низкий; тип водоема по шкале трофности: ультраоглитрофный – β -олиготрофный (табл. 2).

Таблица 2 Численность (N, тыс. экз./м³) и биомасса (B, мг/м³) зоопланктона Усть-Каменогорского водохранилища

Группы	200:	2005 г.,		2006 г.,		2009 г.,		2010 г.,	
зоопланктеров	июнь-июль		июнь		июнь-август		июнь-август		
зоопланктеров	N	В	N	В	N	В	N	В	
Rotifera	19,9	158	24,9	275	7,5	24	7,1	9	
Copepoda	53,6	704	33,8	223	17,6	271	15,5	140	
Cladocera	6,1	111	24,5	103	6,0	184	2,4	56	
Всего	79,6	973	83,1	601	31,2	480	25,0	205	

Класс продуктивности и трофность по Китаеву [3]							
низкий класс, β-олиготрофный тип	низкий класс, β-олиготрофный тип	очень низкий, α-олиготрофный тип	самый низкий, ' ультраолиготрофный тип				

Доминирующей группой по численности и биомассе являлись веслоногие рачки.

Оценка качества водоема. Из 38 таксонов зоопланктонных организмов 23 являлись показателями сапробности. Отмечалось преобладание в зоопланктоне о-β-сапробных видов.

Значения индекса сапробности варьировали в пределах 2 класса качества. Воды на всех исследуемых станциях соответствовали категории «чистые» (табл. 3).

Таблица 3 Индекс сапробности Усть-Каменогорского водохранилища

Участки	Год				Среднее
водохранилища	2005	2006	2009	2010	Среднее
з. Масяновкий	-	1,22	-	-	1,22
з. Гусельничихинский	1,30	1,37	-	-	1,37
з. Феклистовкий	1,42	-	-	-	1,42
з. Таловский	1,40	-	-	-	1,40
Серебрянск	1,38	1,25	1,42	1,41	1,36
Огневка	-	-	1,47	1,47	1,47
Аблакетка	-	-	1,44	1,43	1,44
Среднее	1,38	1,28	1,44	1,44	1,39

Значения индекса видового разнообразия Шеннона-Уивера, рассчитанного по численности зоопланктона, в 2005...2010 гг. варьировали в широком диапазоне от 1,55 до 3,42. В 2005...2006 гг. индекс видового разнообразия составил 1,84...1,98, что позволило охарактеризовать водохранилище как водоем, имеющий невысокий уровень видового разнообразия и устойчивости сообщества (табл. 4). В 2009...2010 гг. индекс несколько увеличился, что указывает на структурные перестройки в гидробиоценозах.

Нарушения экологического баланса водных экосистем можно оценить через изменения в развитии планктонного пелагического сообщества. В качестве критерия механизма адаптации используется изменение соотношения общей численности и общего числа видов. Графический способ

обобщения информации позволил выделить на рисунке зоны, отождествляющие состояние экосистемы, и дать экологическую интерпретацию возможных природных модификаций экосистемы водоема в целом и отдельных его частей [11].

Таблица 4 Индекс видового разнообразия Шеннона-Уивера (бит/экз.) Усть-Каменогорского водохранилища

Участки		Сранцаа			
водохранилища	2005	2006	2009	2010	Среднее
Масяновка	-	2,45	-	-	2,45
Гусельничиха	1,77	2,09	-	-	2,09
Феклистовка	2,00	-	-	-	2,00
з. Таловский	2,23	-	-	-	2,23
Серебрянск	1,93	1,59	2,43	2,06	2,03
Огневка	-	-	2,59	2,14	2,37
Аблакетка	-	-	2,51	2,44	2,48
Среднее	1,98	1,84	2,51	2,21	2,19
Класс качества	3		2		
Характеристика	воды умеренно загрязненные		воды чисть		ые

Проследим динамику состояния экосистемы исследуемого водохранилища за последние годы (рис. 2).

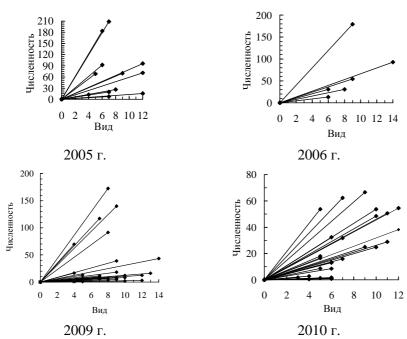


Рис. 2. Веер векторов для Усть-Каменогорского водохранилища.

Веер с короткими векторами с тенденцией приближения к оси абщис (см. рис. 2) характерен для экосистем с богатыми компенсационными возможностями. Это подтверждается количественными показателями развития, что проявляется в достаточно широком и равномерном веере пучка в 2005...2010 гг.

Расположение векторов в нижней части указывает на такое состояние экосистемы, для которой характерны низкий трофический потенциал и небольшое количество различных экониш, так как в течение всего исследуемого периода общее число видов не превышало восьми.

Таким образом, по расположению векторов в декартовой плоскости можно заключить, что Усть-Каменогорское водохранилище это водоем с богатыми компенсационными возможностями, признаков процесса антропогенного эвтрофирования не выявлено.

СПИСОК ЛИТЕРАТУРЫ

- 1. Балушкина Е.В., Винберг Г.Г. Зависимость между массой и длиной тела у планктонных животных // Общие основы изучения водных экосистем. Л.: Наука, 1979. С. 169-172.
- 2. Ибрашева С.И., Смирнова В.А. Кладоцера Казахстана. Алма-Ата: Мектеп, 1983. 135 с.
- 3. Китаев С.П. О соотношении некоторых трофических уровней и «шкалах трофности» озер разных природных зон // Тез. докл. V съезда ВГБО, ч. II. Куйбышев, 1986. С. 254-255.
- 4. Кутикова Л.А. Коловратки фауны СССР (Rotatoria). Л.: Наука, 1970. 744 с.
- 5. Мануйлова Е.Ф. Ветвистоусые рачки (Cladocera) фауны СССР. М.-Л.: Наука, 1964. 326 с.
- 6. Оксиюк О.П. Комплексная экологическая классификация качества поверхностных вод суши / Оксиюк О.П., Жукинский В.Н., Брагинский Л.П., Линник П.Н., Кузьменко М.И., Кленус В.Г. // Гидробиол. журн. 1993. Т. 29. №4. С. 62-71.
- 7. Определители организмов пресных вод СССР. Пресноводные CALANOIDA СССР. / В.М. Рылов. Л.: 1930. 288 с.
- 8. Определитель пресноводных беспозвоночных Европейской части СССР / Отв. ред. Л.А. Кутикова, Я.И. Старобогатов. Л.: Гидрометеоиздат, 1977.-512 с.
- 9. Определитель пресноводных беспозвоночных России и сопредельных территорий. Ракообразные. / С.Я. Цалолихин. СПб.: Наука, 1995. Т. 2. 628 с.

- 10. Отчет о научно-исследовательской работе «Экологический мониторинг, разработка путей сохранения биоразнообразия и устойчивого использования ресурсов рыбопромысловых водоемов трансграничных бассейнов. Раздел: Верхне-Иртышский бассейн (заключительный) 03.03.03.Н3», № ГР (РК) 0101РК00134
- 11. РД 52.24.565-96. Методические указания. Охрана природы. Гидросфера. Метод оценки загрязненности пресноводных экосистем по показателям развития зоопланктонных сообществ. М.: Госстандарт., 1996, 16 с.
- 12. Руководство по гидробиологическому мониторингу пресноводных экосистем / Под ред. В.А. Абакумова. СПб.: Гидрометеоиздат, 1992. 318 с.
- 13. Унифицированные методы исследования качества вод. Атлас сапробных организмов. М.: Изд. СЭВ, 1977. Приложение 2. 227 с.
- 14. Унифицированные методы исследования качества вод. Индикаторы сапробности. М.: Изд. СЭВ, 1977. Приложение 1. 88 с.
- 15. Унифицированные методы исследования качества вод. Методы биологического анализа вод. М.: Изд. СЭВ, 1976. Часть III. 185 с.
- 16. Шарапова Л.И., Фаломеева А.П. Методическое пособие при гидробиологических рыбохозяйственных исследованиях водоемов Казахстана (планктон, зообентос). – Алматы, 2006. – 27 с.
- 17. Шуйский В.Ф., Максимова Т.В., Петров Д.С. Биоиндикация качества водной среды, состояния пресноводных экосистем и их антропогенных изменений // Сборник научн. докл. VII междунар. конф «Экология и развитие Северо-Запада России», Санкт-Петербург, 2-7 авг. 2002 г. СПб.: Изд-во МАНЭБ, 2002. С.110-129.

Восточно-Казахстанский центр гидрометеорологии, г. Усть-Каменогорск

ӨСКЕМЕН СУҚОЙМАСЫНЫҢ ЭКОЛОГИЯЛЫҚ ЖАҒДАЙЫН ЗООПЛАНКТОН КӨРСЕТКІШТЕРІ БОЙЫНША БАҒАЛАУ

А.А. Евсеева

Мақалада Өскемен суқоймасының 2005..2010 жылдардағы зоопланктонын зерттеу мәліметтері көрсетілген. Таксономикалық құрам тізімі, зоопланктонның зерттеу жылдардағы дамуының сандық көрсеткіштері қарастырылған. Зоопланктонның құрамдасфункционалды көрсеткіштері бойынша суқойманың экологиялық жағдайы бағаланған.