УДК 627.81

СОВЕРШЕНСТВОВАНИЕ МЕТОДА СЛОЖЕНИЯ КРИВЫХ ОБЕСПЕЧЕННОСТИ ПРИ РАСЧЕТЕ МНОГОЛЕТНЕЙ СОСТАВЛЯЮЩЕЙ ЕМКОСТИ ВОДОХРАНИЛИЩА

К.Т. Нарбаева

Предложены аналитический и графоаналитический приемы определения многолетней составляющей полезной емкости водохранилища многолетнего регулирования.

Применение обобщенных приемов на основе теории вероятностей в водохозяйственных расчетах в СССР начато с появлением в 1930 году первого способа расчета многолетнего регулирования стока С.Н. Крицкого и М.Ф. Менкеля. В дальнейшем этой теме посвящено большое число исследований. Широкое распространение получил второй метод тех же авторов [1], основанный на принципе сложения кривых обеспеченности. Развитие этого метода изложено в работе [2], суть, которого заключается в следующем.

Расчеты можно ввести без вычисления и построения кривой обеспеченности за два года, при этом верхняя ордината сомнительного интервала определяется по следующей разности:

$$K_{2\alpha} = Y_2 - Y_0$$

где $K_{2\alpha}$ — приведенная ордината верхней границы сомнительного интервала; V_2 — ордината верхней границы сомнительного интервала V_2 = 2α ; V_0 — средняя линия параболической трапеции abcd определяется по формуле Симпсона

$$V_0 = 1/6 [\alpha + 4y + (\alpha - \beta)].$$

У – условная средняя линия, соответствующая

$$Y = f(P_{cp}).$$

$$P_{cp} = \frac{P_{\alpha} + P_{\alpha - \beta}}{2},$$

где P_{α} , $P_{\alpha-\beta}$ – обеспеченности, соответствующие ординатам α и $\alpha-\beta$.

Для определения значения обеспеченности $P_{\alpha-\beta}$ требуется найти приведенную ординату, соответствующую нижней границе сомнительного интервала по формуле:

$$K_{2\alpha-\beta} = Y_2 - \beta - Y_0 = K_{2\alpha} - \beta$$

По найденному $K_{2\alpha-\beta}$ из основной кривой обеспеченности устанавливается значение $P_{\alpha-\beta}$.

Вероятность S_2 , дающая перебой совместно с предшествующим годом, вычисляется $S_2 = \left(1 - P_{\alpha-\beta}\right) \cdot N_2$.

Вероятности сомнительных лет для последующего анализа подсчитывают:

$$N_3 = \left(P_{2\alpha-\beta} - P_{2\alpha}\right)N_2.$$

Из этих лет, согласно выше рассмотренному, перебои дадут годы S_3 , а сомнительные годы будут N_4 . Таким же образом находятся S_4 , N_5 , S_5 , N_6 и т.д.

Основываясь на изложенном, можно перейти к более общим формулам расчета рассортировки условно перебойных n-летий к однолетию (к исходной кривой обеспеченности):

$$K_{n\alpha} = Y_n - Y_0(n-1). \tag{1}$$

Откуда ордината верхней сомнительного интервала кривой обеспеченности n-летий устанавливается:

$$Y_n = n \cdot \alpha, \tag{2}$$

где n — число сочетаний кривых обеспеченностей условно перебойных лет с абсолютной кривой обеспеченности стока.

Средняя линия параболической трапеции, заключенная между верхней и нижней границей сомнительного интервала кривой обеспеченности (n-1)-летия, подсчитывается по формуле:

$$V_0(n-1) = \frac{1}{6} \{ (n-1)\alpha + 4V(n-1) + [(n-1)\alpha - \beta] \}.$$
 (3)

Отсюда условная средняя ордината

$$Y(n-1) = f(P_{cp}) = \frac{P_{(n-1)\alpha} + P_{(n-1)\alpha-\beta}}{2}$$

$$Y(n-1) = \frac{\{(n-1)\alpha + [(n-1)\alpha - \beta]\}}{2} \qquad \text{при} \quad n \ge 3.$$
(4)

Когда $(n-1)\alpha-\beta\leq 0$ и в случае $(n-1)\alpha-\beta\leq V_0(n-1)+K_p$, то значение $(n-1)\alpha-\beta$ заменяется $V_0(n-1)+K_p$ при $n\geq 3$ и K_p при n=2, K_p модульный коэффициент при P=99 %. По вычисленному $K_{n\alpha}$ из кривой обеспеченности однолетия снимается значение обеспеченности $P_{n\alpha}$.

Нахождения значения $P_{n\alpha-\beta}$ необходимо получить нижнюю приведенную ординату по разности:

$$K_{2\alpha-\beta} = V_{n-\beta} - V_0(n-1) = K_{n\alpha} - \beta.$$
 (5)

По $K_{n\alpha}-eta$ из первоначальной кривой обеспеченности определяется $P_{n\alpha}-eta$.

Далее вероятности перебойных лет находятся:

$$S_n = (1 - P_{n\alpha - \beta}) N_n . (6)$$

Вероятности сомнительных лет вычисляются:

$$N_{n+1} = \left(P_{n\alpha-\beta} - P_{n\alpha}\right) N_n \ . \tag{7}$$

Таким образом, все годы N_n сортируется до конца на перебойные и бесперебойные. Полная вероятность S наступления перебойных лет составляется как сумма:

$$S = S_1 + S_2 + \dots + S_n = \sum_{i=1}^{i=n} S_i.$$
 (8)

Обеспеченность гарантированной отдачи P % по числу бесперебойных лет:

$$P = (1 - S) \cdot 100 \% . (9)$$

Далее изложенный аналитический метод расчета многолетней составляющей полезной емкости водохранилища многолетнего регулирования стока можно иллюстрировать в графоаналитических приемах. Для этого за начало счета принята норма годового стока, а в качестве переменного аргумента принимается параметр Φ :

$$\Phi = \frac{\alpha + \beta - 1}{C_{\nu}},\tag{10}$$

где Φ — приведенная отдача с учетом емкости; α — коэффициент зарегулирования, включающий полезную отдачу и потери воды из водохранилища; β — коэффициент многолетней составляющей полезной емкости, выраженный в долях нормы стока; C_{ν} — коэффициент изменчивости годового стока.

Полученные зависимости $\Phi = f(\alpha, C_v u P \%)$ приводятся в рисунке.

На основании полученных зависимостей и следующей формулы можно установить многолетнюю емкость:

$$\beta = 1 - \alpha + \Phi \cdot C_{v} \,. \tag{11}$$

Сравнительные расчеты существующими приемами определения многолетней оставляющей емкости дают близкие результаты, т.е. не выходят за допустимые значения.

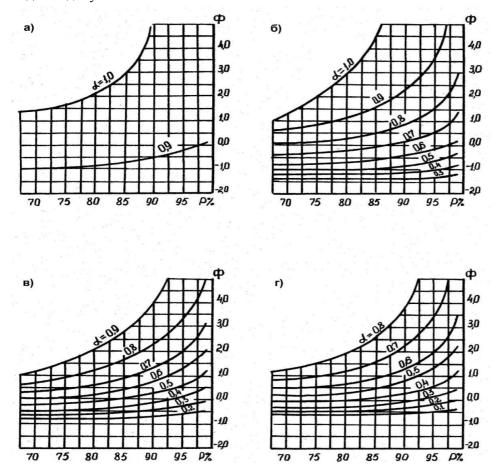


Рис. Зависимость приведенной отдачи с учетом емкости Φ от обеспеченности P % при фиксированном C_v ; а) при $C_v = 0.1$; б) при $C_v = 0.5$; в) при $C_v = 1.0$; г) при $C_v = 1.5$.

выводы

- 1. Предлагаемый прием позволяет вести расчеты при любом соотношении C_s к C_{ν} в пределах $C_s = (1 \div 6) \cdot C_{\nu}$
- 2. Исключение расчета и построения кривой обеспеченности n -летия упрощает и ускоряет вычислительные операции.

СПИСОК ЛИТЕРАТУРЫ

- 1. Крицкий С.Н., Менкель М.Ф. Многолетнее регулирование стока // Гидротехническое строительство. 1935. №10-12. С. 3-10.
- 2. Нарбаев Т.И. Метод сложения кривых обеспеченности. Вопросы мелиорации и гидротехнического строительства в Условиях Казахстана. // Труды ТИИИ МХС. 1979. Вып. 102. С. 111-116.

Казахский Национальный Аграрный Университет, г. Алматы

СУ БӨГЕНІНІҢ ПАЙДАЛЫ КӨЛЕМІНІҢ КӨП ЖЫЛДЫҚ ҚҰРАСТЫРУШЫСЫН ЕСЕПТЕУГЕ ҚАМТАМАСЫЗДЫҚ ҚИСЫҚТАРДЫ ҚОСУ ТӘСІЛІН ЖЕТІЛДІРУ

Қ.Т. Нарбаева

Көпжылдық ағынды реттеуде су бөгенінің пайдалы көлемінің көпжылдық құрастырушысын анықтауға аналитикалық.