УДК 551.551.8+551.515.3(252.83)

ВЕРТИКАЛЬНЫЙ ПОТОК МАССЫ АЭРОЗОЛЯ ПРИ ПЕСЧАНОСОЛЕВЫХ БУРЯХ НА ОСУШЕННОЙ ЧАСТИ ДНА АРАЛЬСКОГО МОРЯ

Канд. физ.-мат. наук О.Е. Семенов

Выполнены расчеты вертикального потока массы Q_w песчаного аэрозоля размером менее 73 мкм по результатам экспедиционных измерений на осушенном дне Арала во время песчаных бурь. Q_w изменяется от 10⁻⁸ до 10⁻⁴ кг·м⁻2·с⁻¹ в интервале значений динамической скорости потока u_* от 0,2 до 0,82 м/с. Получены графические зависимости Q_w от u_* и числа Фруда.

Наряду с горизонтальными характеристиками потока массы частиц в двухфазных потоках (твердый, общий и полный расход) большое значение имеет определение значения вертикального потока массы частиц от поверхности в единицу времени. Вертикальный поток массы частиц Q_w является одной из основных величин источника примеси при математическом моделировании ветрового переноса твердой фазы. Он характеризует способность поверхности генерировать поток массы твердой фазы от источника и определяется числом частиц N, срываемых ветром в единицу времени с единичной площади поверхности, их массой m_p и вертикальной скоростью движения w, т.е. в случае монодисперсного размера частиц определяется произведением

$$Q_w = m_n \cdot N \cdot w$$
.

Произведение Nw Бютнер [1] назвала интенсивностью поверхностного источника и использовала при исследовании сальтации частиц песка и снега в приповерхностном слое воздуха. Поскольку информации об интенсивности поверхностного источника Nw и его зависимости от скорости потока нет, Бютнер задавала его и подбирала по сходимости рассчитанного ею горизонтального потока массы песка с его измеренными значениями. Этот же подход для задания источника примеси Q_w использовали Каипов [10] и Дедова [3] при моделировании переноса аральского аэрозоля.

Другой способ определения вертикального потока массы частиц при бурях через пульсационные характеристики потока суспензии (частиц + воздух)

$$Q_w = \rho \cdot s' \cdot w'$$

где ρ – плотность частиц, s' и w' – пульсации объемной концентрации твердой фазы и вертикальной составляющей скорости потока. Этот прямой метод определения Q_w наиболее предпочтителен, но очень труден для практического применения в виду сложности как измерительной аппаратуры, так и вычислений. Он начал быстро развиваться в наши дни на базе современной вычислительной техники и стремительного прогресса оптических методов измерений концентрации аэрозолей и их дисперсного состава.

Более простыми экспериментальными способами определения вертикальных потоков субстанции является градиентные методы, основанные на измерении параметров потока на двух уровнях [2, 4, 5, 6, 9]. Вычисления вертикального потока массы песчаного аэрозоля по этому методу в [9] рекомендовано выполнять по формуле

$$Q_{w} = -\kappa (u_{*} - w_{g}) \frac{k_{p2}S(z_{2}) - k_{p1}S(z_{1})}{\ln \frac{z_{2}}{z_{1}} + \beta_{a}\frac{z_{2} - z_{1}}{L}},$$
(1)

где $S(z_2)$ и $S(z_1)$ – концентрация частиц субстанции на уровнях z_2 и z_1 , $\beta_a = 1$ – эмпирическая константа, k_{p1} и k_{p2} – доля частиц размером менее 73мкм, способных к турбулентной диффузии, на высотах z_1 и z_2 от всей уловленной приборами массы песка, $\kappa = 0,4$ – постоянная Кармана, L –масштаб Монина-Обухова, u_* – динамическая скорость, w_g – скорость свободного падения частиц песка модального размера, способных участвовать в турбулентной диффузии (гидродинамическая крупность частиц) [7].

Вертикальный поток массы, направленный от поверхности вверх, является положительной величиной, а поток, направленный вниз, – отрицательным и указывает на процесс выпадения частиц твердой фазы из атмосферы на поверхность. Отрицательные значения Q_w при вычислениях по формуле (1) возникают в двухфазных потоках в двух случаях – если концентрация частиц на верхнем уровне больше концентрации примеси на нижней высоте $S(z_2) > S(z_1)$ или гидродинамическая крупность частиц больше динамической скорости $w_g > u_*$.

Отсутствие турбулентного потока массы частиц ($Q_w = 0$) получается при наличии равенств $u_* = w_g$ или $S(z_2) = S(z_1)$. Следует отметить и недостаток этой методики расчета. Вычисления $Q_{_{\scriptscriptstyle W}}$ при значениях динамической скорости потока близких к w_{p} модального размера частиц аэрозоля неточны. Так при соблюдении равенства $u_* = w_g$ поток массы Q_w в действительности не равен нулю, что объясняется наличием в песковетровом потоке и мелких частиц, у которых скорость осаждения меньше принятой в расчетной формуле скорости их модального размера. Кроме того, при небольших скоростях ветра – до 8...10 м/с на высоте 10 м ($u_* < 0,4$ м/с) – на значения $S(z_2)$ и $S(z_1)$ еще влияет температурная стратификация ветропесчаного потока. Конвекция увеличивает вертикальный поток массы частиц, а температурные инверсии уменьшают. Поэтому вычисления Q_w при небольших скоростях ветра сопровождаются значительными погрешностями. Процессы переноса частиц песка в ночные часы и при инверсиях температур отличаются от дневных бурь при развитой вынужденной конвекции меньшей интенсивностью, так как поток воздуха имеет значительно меньшую интенсивность (степень) турбу-

лентности $\varepsilon = \sqrt{\binom{u'}{2}}{(u)^2}^2$. Энергия турбулентных вихрей генерируется в

этих случаях только за счет динамического взаимодействия потока воздуха с подстилающей поверхностью.

Влияние температурной стратификации на перенос песка ветром

Для оценки влияния устойчивости атмосферы на профили метеорологических параметров обычно рассматривается роль вертикального потока тепла в процессе генерации турбулентной энергии и сравнивается вклад этого эффекта с поступлением энергии за счет градиента средней скорости. Для количественного определения степени устойчивости приземного слоя атмосферы удобно использовать масштаб Монина-Обухова L

$$L = -\frac{c_p \cdot \rho \cdot T \cdot u_*^3}{\kappa \cdot g \cdot H}$$

или число Ричардсона в градиентной форме

$$Ri = \frac{g}{\theta} \cdot \frac{\frac{\partial \theta}{\partial z}}{\left(\frac{\partial u}{\partial z}\right)^2},$$

где c_p – удельная теплоемкость воздуха при постоянном давлении, ρ – плотность воздуха, T=273+t – абсолютная температура, θ – потенциальная температура, g – ускорение свободного падения, u – скорость ветра, u_* – динамическая скорость, z – высота, H – турбулентный поток тепла. В приземном слое $\frac{\partial \theta}{\partial z} = \frac{\partial T}{\partial z}$, где T – абсолютная температура.

По Монину и Яглому [5], различным условиям стратификации приземного слоя атмосферы соответствуют следующие значения масштаба длины Монина-Обухова: сильная неустойчивость L = -2 м, умеренная неустойчивость L = -10 м, слабая неустойчивость L = -100 м, слабая устойчивость L = 20 м, умеренная устойчивость L = 4 м, сильная устойчивость L = 1,6 м. Как известно, при устойчивой стратификации Ri > 0, при сверхадиабатической (неустойчивой) Ri < 0, а условиям, близким к безразличной стратификации, соответствуют значения $|Ri| \le 0,03$ на высоте 1 м.

Оказалось, что слабые по интенсивности процессы переноса песка ветром могут наблюдаться в различно стратифицированном потоке. Но при более интенсивных бурях при превышении динамической скорости u_* значений свыше 0,35...0,40 м/с в подавляющем числе случаев влияние температурной стратификации на поток оказывается несущественным, так как наблюдаются условия, близкие к безразличной стратификации. Ло-кальное число Ричардсона на уровне одного метра Ri_1 было меньше 0,03 [8]. Это явление объясняется двумя физическими процессами.

Как известно, с ростом скорости ветра роль потока тепла на генерирование турбулентной энергии быстро падает и начинают доминировать динамические силы. Вторая причина связана с эффектом нагревания слоя воздуха, насыщенного аэрозолем как за счет сильного поглощения солнечной радиации, так и передачи тепла воздуху от частиц песка, поднимаемых с горячей подстилающей поверхности. Происходит повышение температуры воздуха и ее выравнивание по высоте в слое переноса частиц твердой фазы. Таким образом, днем во время песчаных бурь в Казахстане при значениях динамической скорости $u_* > 0,35...0,4$ м/с поток воздуха, 32 несущий частицы песка, стремится к изотермическому состоянию [7-9] Американский исследователь Жилет также пишет о нейтральной стратификации приземного слоя атмосферы во время пыльных бурь над эродируемыми почвами в США [11].

Механизм выравнивания температуры в приземном слое атмосферы действует и при ветровом подъеме частиц с холодной подстилающей поверхности. Взлетающие более холодные частицы охлаждают воздух и приводят к уменьшению вертикальных градиентов температуры. Этот механизм выравнивания температуры воздуха наблюдается во время ночных случаев ветрового переноса частиц и днем при инверсном распределении плотности воздушного потока, когда более теплая воздушная масса натекает на холодную подстилающую поверхность. Чаще всего такие случаи песчаных бурь и поземков бывают в переходные сезоны года – ранней весной или поздней осенью. На рис.1 приведены полученные нами зависимости изменения локального числа Ri₁ с ростом значений u_{*} при песчаных бурях и поземках в Прибалхашских песках и на сухом дне Арала. К сожалению, локальное число Ричардсона не позволяет количественно оценить влияние стратификации атмосферы на вертикальные потоки субстанции при динамических скоростях потока менее 0,35...0,4 м/с. Масштаб Монина-Обухова L представляет возможность учесть эту особенность ветропесчаных потоков, как это видно в формуле (1). Кроме того, большой теоретический и практический интерес представляет само определение значений масштаба Монина-Обухова при бурях, так как оценок его значений пока никто не делал. Наш комплекс градиентных измерений позволил рассчитать турбулентный поток тепла и получить значения масштаба длины L. На рис. 2 показано изменение значений масштаба длины L при бурях с увеличением динамической скорости ветропесчаного потока.

Рисунок позволяет получить более детальное и полное представление о том, при каких условиях стратификации пограничного слоя атмосферы происходит ветровой перенос песка. Слабые по интенсивности явления переноса песка (песчаные поземки) могут наблюдаться при $u_* < 0,3$ м/с в условиях сильной и умеренной неустойчивости приземного слоя атмосферы, когда $L \leq -10$ м. Интенсивные песчаные поземки ($0,3 < u_* < 0,4$ м/с) бывают уже лишь в условиях слабой неустойчивости (L > -15...-30 м) – поток мелкодисперсного аэрозоля при этих скоростях потока уже влияет на выравнивание температуры воздуха в слое его переноса. Переход поземков в песчаные (пыльные) бури на сухой подстилающей поверхности обычно происходит при

динамической скорости потока, равной, примерно, 0,4 м/с. Бури наблюдаются уже в условиях слабой неустойчивости или безразличной стратификации как приземного слоя атмосферы, так и значительной толщи пограничного планетарного слоя атмосферы. Масштаб Монина-Обухова во время бурь достигает значений высоты приземного слоя атмосферы и даже – 1000 м.

Рис. 1. Изменение стратификации приземного слоя атмосферы при песчаных бурях с ростом динамической скорости потока в Прибалхашье (а) и Приаралье (б).

К сожалению, из-за недостатка информации выполнить анализ воздействия поднимаемых в воздух частиц песка на переход от устойчивой стратификации к слабо устойчивой и безразличной при положительных значениях *L* пока не возможно. Нужны наблюдения за ночными песчаными бурями и бурями, которые начинаются при инверсиях температуры.

Рис. 2. Изменение масштаба длины Монина-Обухова с ростом динамической скорости ветропесчаного потока.

Вертикальный поток массы песчаного аэрозоля

Градиентный метод исследования песчаных бурь позволил нам определить вертикальный поток массы мелкого песка (менее 73 мкм) по материалам измерений экспедиций, проведенных на Арале с 1980 по 1998 г. Они выполнены на песках различной крупности со средним геометрическим размером песчинок, который изменялся в различных местах проведения экспедиций от 97 до 270 мкм. Методика наших градиентных метеорологических измерений во время песчаных бурь описана в монографии [10].

Для измерений каждого года были определены коэффициенты k_{pl} и

 k_{p2} расчетной формулы для Q_w , так как в экспедициях изучалась не только масса переносимых частиц песка на различных уровнях приземного слоя атмосферы, но и изменение с высотой их функции распределения частиц по размерам. Для вычисления использовалась информация о твердом расходе песка (горизонтальный поток массы частиц) q и скорости ветра u со стандартных уровней градиентных измерений – 0,5 и 2 м. Концентрация песка рассчитывалась по формуле S = q/u. Гидродинамическая крупность частиц модального размера, участвующих в турбулентном переносе, была принята

 $w_g = 0,29$ м/с. Всего получено около 120 значений Q_w в интервале значений динамической скорости потока от 0,15...0,2 до 0,82 м/с.

Большой интерес представляет получение зависимости вертикального потока массы частиц мелкого песка Q_w от динамической скорости потока u_* , которая может быть использована при задании мощности плоскостного источника аэрозолей при бурях в процессе их математического моделирования. На рис. 3 приведена полученная нами зависимость $Q_w = f(u_*)$. При её построении использованы абсолютные значения Q_w .

Рис.3. Зависимость вертикального потока массы частиц мелкого песка (менее 73 мкм) от динамической скорости потока при песчаных бурях над подвижными песками Арала.

1 – песчаная поверхность со средним геометрическим размером частиц x_0 = 210 мкм и x_0 = 270 мкм, 2 – мелкий песок с x_0 = 97...120 мкм

На рисунке хорошо виден стохастический характер полученной зависимости. Анализ сопутствующих материалов метеорологических наблюдений приводит к выводу, что в этой области значений u_* следует выделить две зависимости $Q_w = f(u_*)$. Нижняя кривая на рис. 3 описывает вертикальный поток массы аэрозоля над поверхностью, сложенной крупным пес-

ком со средним геометрическим размером частиц x_0 210 и 270 мкм. Эти пески практически не содержат мелких частиц, способных участвовать в турбулентном переносе, поэтому Q_w над ними при небольших скоростях потока очень мал – менее 10⁻⁸ кг·м⁻²·с⁻¹ или меньше 10 мкг·м⁻²·с⁻¹. Для этого крупного песка $Q_w = f(u_*)$ описывается следующим уравнением

$$Q_w = 5, 1 \cdot 10^{-6} u_*^{6,5}$$

в котором Q_w измеряется в кг·м⁻²·с⁻¹, а u_* – в м/с.

Вторая (верхняя) кривая описывает поток массы Q_w над поверхностью, сложенной из мелкого песка с $x_0 = 97...120$ мкм Диапазон изменения Q_w над мелким песком охватывает пять порядков величины – от 10^{-8} до 10^{-4} кг·м⁻²·с⁻¹ при изменении u_* от 0,2 до 0,82 м/с. Она аппроксимируется зависимостью

$$Q_w = 1,41 \cdot 10^{-4} u_*^{6,5}$$
.

Большой разброс данных измерений при $u_* < 0,3$ м/с объясняется несколькими причинами. Не стационарность процесса переноса песка во времени, когда он носит прерывистый характер; влияние температурной стратификации (инверсий температуры) и состояние поверхностного слоя песка – сухой он или влажный – всё это приводит к снижению потока массы песка.

Сравним полученные нами значения Q_w частиц песка размером менее 73 мкм с результатами исследований вертикального потока пыли размером менее 20 мкм от сельскохозяйственных почв США, подвергающихся дефляции, выполненными Жиллетом и Пасси [11] Они проводили отбор проб мелкодисперсной пыли аспирационным методом на фильтры над тремя типами почв, подвергающихся процессу выветривания.

Приводим полученный Жиллетом и Пасси график зависимости вертикального потока массы пыли от динамической скорости u_* (рис. 4). На рисунке ими также представлены единичные определения Q_w Бормана и Яйнике, Фейрчайда и Теллери, полученные в аэродинамических трубах. Интервал полученных этими авторами значений Q_w на графике охватывает четыри порядка от 10^{-10} до 10^{-6} г·см⁻²·с⁻¹ или 10^{-9} до 10^{-5} кг·м⁻²·с⁻¹ (1 г·см⁻²·с⁻¹ = 10 кг·м⁻²·с⁻¹) при изменении u_* от 0,22 до 0,75 м/с. На рисунке Жиллетом и Пасси проведена также теоретическая кривая Оуэна (линия А)

и её асимптотическая кривая В, пропорциональная u_*^4 . Можно отметить также, что прослеживается более тесная связь между Q_w и u_* для каждого отдельного типа почв, т.е. на зависимость влияют ещё какие-то параметры, отличающие почвы друг от друга. Зависимость имеет стохастический характер с достаточно большой дисперсией Q_w для одного и того же значения u_* и эмпирические точки указывают, что показатель степени при u_* больше 4. Её можно аппроксимировать следующей формулой

$$Q_w = 3,16 \cdot 10^{-18} u_*^{5,95},$$

где Q_w дается в г·см⁻²·с⁻¹, а u_* – в см/с.

У нас при увеличении динамической скорости в интервале 0,2...0,82 м/с вертикальный поток массы частиц Q_w изменяется от 10^{-8} до

 10^{-4} кг·м⁻²·с⁻¹. Таким образом, рассчитанные нами значения вертикального потока массы частиц по порядку величины согласуются с результатами Жиллета и Пасси, полученными ими по отличным от наших методик отбора проб аэрозоля и вычислений. На обеих полученных зависимостях $Q_w = f(u_*)$ видно (см. рис. 3 и 4), что для одного и того же значения u_* вертикальный поток массы песка Q_w может принимать значения, отличающиеся на порядок. Поэтому в дальнейшем детерминированный подход к определению зависимости Q_w от u_* необходимо дополнить её вероятностным описанием.

Более универсальной, учитывающей размер частиц, является зависимость вертикального потока массы песчаного аэрозоля Q_w от аналога числа Фруда, в котором скорость потока заменена на динамическую скорость $Fr_* = \frac{u_*^2}{g \cdot x_0}$, где g = 9,81 м·с⁻², x_0 – средний геометрический размер

частиц песка на деятельной поверхности. На рис. 5 приведена полученная нами зависимость $Q_w = f(Fr_*)$.

Рис. 5. Зависимость вертикального потока массы песчаного аэрозоля размером менее 73 мкм от динамического числа Фруда.

Зависимость вертикального потока массы песчаного аэрозоля от числа $Fr_* = \frac{u_*^2}{g \cdot x_0}$ позволяет задавать интенсивность источника поступления его в атмосферные потоки от подвижной песчаной поверхности для заданного значения динамической скорости потока u_* и среднего геометрического размера частиц песка на поверхности. Она также как и зависимость Q_w от u_* носит стохастический характер. Зависимость можно описать следующей формулой

$$Q_w 2,82 \cdot 10^{-14} Fr_*^{-3,25}$$

Нижняя кривая на рис.5 соответствует случаям переноса песка над слабо увлажненными и быстро подсыхающими поверхностями в условиях инверсионного распределения температуры в приземных слоях воздуха.

Значительный статистический разброс зависимостей $Q_w = f(u_*)$ и $Q_w = f(Fr_*)$ в первую очередь объясняется большой пространственной и временной изменчивостью состояния подстилающей поверхности – её влажности, проективного покрытия растительностью, механического состава почвогрунтов, рельефа местности. Эти же причины приводят к тому, что эмпирические зависимости очень сильно зависят от динамической скорости потока – показатель степени значительно превышает предсказанные теорией значения. Кроме того, вертикальный поток массы частиц зависит и от других факторов, которые не учтены в полученных одно и двух параметрических зависимостях, на которых видно, что для одного и того же значения параметра вертикальный поток массы песка Q_w может принимать значения, отличающиеся на порядок. Поэтому в дальнейшем детерминированный подход к определению зависимости Q_w от u_* и Fr_* необходимо дополнить их вероятностным описанием.

В заключение статьи автор считает своим приятным долгом выразить глубокую благодарность своим коллегам и товарищам по экспедиционным работам А.П. Шапову, О.С. Галаевой, внесшим большой и трудно оценимый вклад в получение результатов этой работы.

СПИСОК ЛИТЕРАТУРЫ

1. Бютнер Э.К. Динамика приповерхностного слоя воздуха. – Л. Гидрометеоиздат, 1978. – 157 с.

- Гаргер Е.К., Жуков Г.П., Седунов Ю.С. К оценке параметров ветрового подъема радионуклидов в зоне Чернобыльской атомной электростанции // Метеорология и гидрология. – 1990. – № 1. – С. 5–10.
- Дедова Т.В. Геоинформационное моделирование процессов выноса аэрозолей с осушенного дна Аральского моря: Дис...канд. техн. наук / Институт математики. – Алматы, 2002. – 109 с.
- Зилитинкевич С.С. Динамика пограничного слоя атмосферы. Л.: Гидрометеоиздат, 1970. – 291 с.
- 5. Монин А.С. Яглом А.М. Статистическая гидромеханика. Механика турбулентности. Часть І. М.: Наука, 1963. 639 с.
- 6. Руководство по теплобалансовым наблюдениям. Л.: Гидрометеоиздат, 1977. – 149 с.
- 7. Семенов О.Е. Об ускорении потока во время сильных песчаных и пылевых бурь // Гидрометеорология и экология. 2000. №3-4. С. 23 48.
- 8. Семенов О.Е. Экспериментальные исследования кинематики и динамики пыльных бурь и поземков // Тр. КазНИГМИ. 1972. Вып. 49. С. 3-31.
- Семенов О.Е., Шапов А.П., Каипов И.В. Песчано-солевые бури в Приаралье // Гидрометеорологические проблемы Приаралья / Под ред. Г.Н. Чичасова. – Л.: Гидрометеоиздат, 1990. – С. 132–233.
- Семенов О.Е. О методике определения вертикального потока массы тяжелой быстро оседающей примеси // Гидрометеорология и экология. - 2002. - № 4. - С. 47 - 54
- 11. D. Gillette, R. Passi. Modeling Dust Emission Caused by Wind Erosion // J. of Geoph. Research. 1988. Vol. –93, № D11. P. 14233 14242.

Казахский научно-исследовательский институт экологии и климата

АРАЛ ТЕҢІЗІ Т¦БІНІЎ ЅµР¤АП ЅАЛ¤АН Б‡ЛІГІНДЕ ТµЗДЫ-ЅµМДЫ ДАУЫЛ КЕЗІНДЕ АЭРОЗОЛЬ САЛМАЅТАРЫНЫЎ ТІГІНЕН А¤ЫСЫ

Физ-мат. Јылымд. канд.

О.Е. Семенов

ШаЎды дауыл кезінде АралдыЎ јгрЈап јалЈан тҐбінде экспедициялыј †лшеулердіЎ н,,тижелері бойынша 73 мкм-ден аз †лшемді јгм аэрозольдарыныЎ салмајтарыныЎ Q_w вертикальді аЈысын есептеу жҐргізілген. Q_w аЈыныныЎ динамикалыј жылдамдыЈы U* 0,2-ден 0,82 м/с м,,ндері аралыЈында 10⁸-ден 10⁻⁴ кг м⁻² с⁻¹-ја дейін †згереді. Q_w-діЎU*ж,,не Фруд санына графиктік т,,уелділігі алынЈан.