УДК 551.583 (282.255.51)

ОЦЕНКА АНТРОПОГЕННОГО ИЗМЕНЕНИЯ ИОННОГО СТОКА РЕКИ ИЛИ

Ж.К. Турениязова

При многолетнем зарегулировании водохранилищем стока р. Или антропогенная составляющая ионного стока последовательно нарастает от маловодного κ многоводному году. Значительные изменения в солевом составе воды отмечаются в основном за счет ионов Mg^{2+} , SO_4^{2-} и $C\Gamma$.

В результате строительства и ввода в эксплуатацию Капчагайского водохранилища в низовье р. Или коренным образом изменен гидрологический режим. В связи с этим, представляет интерес определение поступления солевого стока в оз. Балхаш и его изменение, обусловленное влиянием Капчагайского водохранилища.

Многолетние исследования показали, что при зарегулировании водного стока рек состав химических ингредиентов воды претерпевает заметные изменения [1, 5]. В результате трансформации водных масс и их взаимодействия с ложем водохранилища наблюдается перераспределение главных ионов – концентрация сульфатов, хлоридов, натрия и калия увеличивается, гидрокарбонатов и кальция уменьшается. Влияние водохранилищ на нижележащий участок реки прослеживается на сотни километров вниз по течению. Характерные изменения в химическом составе воды были отмечены и в р. Или [2, 4]. Необходимо отметить, что происходящие изменения под влиянием Капчагайского водохранилища коснулись в первую очередь внутригодовой динамики гидрохимических показателей, хотя речной сток, как и прежде, соответствует по классификации О.А. Алекина гидрокарбонатному классу кальциевой группы.

Путем слежения за изменением концентрации химического элемента в речном стоке нельзя дать количественную оценку антропогенной составляющей вследствие очень значительных колебаний природных концентраций, связанных с колебаниями водного стока. Поэтому для количественной оценки поступления в водоемы химических элементов антропогенного генезиса предложена разработка критериев изменения солевого (анионно-катионного) состава речного стока под влиянием антропогенно-

го воздействия [3]. Отработка данной методики производилась на примере крупных рек СНГ, антропогенная составляющая солевого стока которых в настоящий период оценивается в среднем величиной порядка 15...20 %.

В качестве репера использована концентрация гидрокарбонатных ионов, поскольку в речных водах она, прежде всего, определяется подвижным карбонатно-кальциевым равновесием. Несмотря на некоторое поступление в реки гидрокарбонатных ионов за счет антропогенного фактора, их количество в воде практически не возрастает, ограниченное низкой растворимостью карбоната кальция. Выполненные расчеты [6] также подтвердили, что создание Капчагайского водохранилища существенно не повлияло на среднегодовую концентрацию НСО₃⁻ в р. Или.

Для оценки антропогенного воздействия на солевой состав р. Или весь период наблюдений за химическим составом воды подразделяется на периоды естественного и нарушенного гидрохимического режимов и рассматривается по годам различной обеспеченности (25, 50, 75, 95 %).

В период зарегулирования стока р. Или характерным изменением было сокращение объемов стока, что важно в свете известной классической закономерности, согласно которой сток растворенных химических веществ в значительной мере определяется их водностью. По результатам расчетов уменьшение солевого стока отмечается только при $P=75\,\%$. Если в естественных условиях суммарный ионный сток составил 4,53 млн. т, то после создания и ввода в эксплуатацию Капчагайского водохранилища поступление солей сократилось до 4,22 млн. т, то есть на 7 %. Тогда как при другой водности года явно прослеживается значительное увеличение солевого стока. Например, в многоводный год с $P=25\,\%$ вынос рекой в оз. Балхаш растворенных солей возрос на 0,58 млн. т, $P=95\,\%-0,30$ млн. т (табл. 1).

Как показали результаты сравнительного анализа, в ионном составе р. Или отмечается независимо от водности года несомненный рост ионов – Mg^{2+} , SO_4^{2-} , Cl^- и Na^+ + K^+ . Например, при P=25 и 50 % катионы Mg^{2+} увеличились на 10...64 %, SO_4^{2-} – 70...79 %, Cl^- – 45...77 %, Na^+ + K^+ – 52...61 %. В среднемаловодном году с P=75 % зарегистрировано значительное возрастание анионов Cl^- (65 %), также SO_4^{2-} на 19 %. Увеличение солей при P=95 % наблюдается за счет ионов Mg^{2+} , Na^+ + K^+ (24...25 %) и SO_4^{2-} (19 %). Относительно катионов Ca^{2+} отмечается тенденция уменьшения (14...35 %) независимо от водности года.

Таблица 1 Солевой состав р. Или при естественном (ЕГР) и нарушенном (НГР) гидрологическом режимах

тидрологи теском режимах										
		Ср	Общий	Объем						
Режим	Ca ²⁺	Mg^{2+}		-	-	Cl ⁻	вынос,	стока,		
	Ca						млн. т	KM ³		
P = 25 %										
ЕГР	1,01	0,11	0,44	2,95	0,77	0,26	5,55	16,8		
НГР	0,66	0,29	0,71	2,64	1,38	0,46	6,13	15,9		
в % при НГР										
	65	264	110	95						
	Антропогенная составляющая выноса									
	36	65	45	0	50	50				
P = 50 %										
ЕГР	0,67	0,10	0,33	2,14	0,66	0,22	4,12	14,3		
НГР	0,56	0,21	0,50	2,16	1,12	0,32	4,88	12,6		
в % при НГР										
	84	210	152	101	170	145	118	88		
Антропогенная составляющая выноса										
	21	52	34	0	40	31	15			
			P	= 75 %						
ЕГР	0,66	0,24	0,38	2,17	0,87	0,20	4,53	13,5		
НГР	0,46	0,21	0,44	1,89	0,89	0,33	4,22	12,5		
	в % при НГР									
	70	88	116	87	102	165	93	94		
		Антроі	погенная	составл	яющая	вынос	a			
	24	0,5	25	0	15	45	7			
P = 95 %										
ЕГР	0,50	0,16	0,34	1,77	0,69	0,18	3,65	11,0		
НГР	0,43	0,20	0,42	1,76	0,82	0,31	3,95	10,3		
в % при НГР										
	86	125	124	99	119	172	108	94		
Антропогенная составляющая выноса										
	16	20	19	0	16	42	7			

При непосредственном сопоставлении как общегодового солевого стока и годового выноса отдельных ионов, так и их среднегодовых концентраций фактически невозможно количественно оценить антропогенную составляющую ионного стока. В таких случаях критерием антропогенного воздействия на солевой (анионно-катионный) состав речного стока могут служить величины отношений содержания HCO_3 иона к содержанию других компонентов солевого состава.

Из анализа табл. 2 следует, что по мере непропорционального возрастания концентрации ионов Mg^{2+} , SO_4^{2-} , Cl^- и $Na^+ + K^+$ антропогенного генезиса, понижаются величины отношения гидрокарбонатного к этим компонентам. В многоводном году с Р = 25 % обеспеченностью в результате значительных антропогенных поставок катионов магния величины отношения HCO_3^{-1}/Mg^{2+} в стоке понизились в 2,7 раза, $HCO_3^{-1}/Na^{+} + K^{+}$, SO_4^{2-} – в 1,8 раза, HCO_3^{-}/Cl^{-} – в 1,7 раза. Соответственно в значительной степени изменились соотношения главных ионов к НСО₃. При Р = 50 % отмечается значительное изменение величины отношения HCO₃⁷/ Mg²⁺ (в 1,9 раза), в меньшей степени – HCO_3^-/SO_4^{2-} (в 1,5 раза), $HCO_3^-/Na^+ + K^+$, СІ (в 1,3 раза). В среднемаловодный год с Р = 75 % величины отношения HCO_3^-/CI^- понизились в 1,9 раза, HCO_3^-/SO_4^{-2-} – в 1,5 раза, $HCO_3^-/Na^+ + K^+$ – в 1,2 раза. Величины изменения отношения НСО₃- к другим ионам при P = 95 % незначительные и составляют: $HCO_3^{-1}/Cl^{-1} - B 1,6$ раза, HCO_3^{-1}/SO_4^{-2} - в 1,3 раза, HCO_3^-/Mg^{2+} , $HCO_3^-/Na^+ + K^+ -$ в 1,2 раза. Минимально изменились и величины отношения HCO₃-/Ca²⁺ в сторону увеличения, связанные с уменьшением концентрации Ca²⁺ независимо от водности года.

Таблица 2 Величины отношения содержания гидрокарбонатных ионов к другим компонентам ионного состава р. Или

Режим	Величина отношения НСО3 к ионам								
ГСЖИМ	Ca^{2+}	Mg^{2+}	$Na^+ + K^+$	SO_4^{2-}	Cl				
P = 25 %									
ЕГР	2,8	25,1	6,2	3,4	10,4				
НГР	4,4	9,2	3,7	2,0	5,7				
P = 50 %									
ЕГР	3,3	16,7	5,4	2,9	8,3				
НГР	3,9	9,9	4,1	1,9	6,4				
P = 75 %									
ЕГР	3,3	7,5	5,0	3,2	10,1				
НГР	4,1	8,9	4,3	2,1	5,6				
P = 95 %									
ЕГР	3,6	10,5	5,1	2,9	9,4				
НГР	4,2	8,9	4,2	2,2	5,7				

Влияние Капчагайского водохранилища на сток ионов Ca^{2+} обусловило возникновение жесткой положительной корреляционной связи с водным стоком, ослабило природную связь с их концентрациями до незначимой. Также в большинстве случаев отмечается тесная связь стока $Na^+ + K^+$ с кон-

центрацией, по отношению стока главных ионов с объемом стока коэффициент корреляции высокий и колеблется в пределах 0,65...0,93 (табл. 3).

Таблица 3 Корреляционная связь стоков ионного состава р. Или с их концентрацией (1) и водным стоком (2)

Р,	, HCO ₃		SO_4^{2-}		Cl ⁻		Ca^{2+}		Mg^{2+}		$Na^+ + K^+$	
%	1	2	1	2	1	2	1	2	1	2	1	2
25	0,04	0,89	0,94	0,70	0,43	0,88	0,76	0,73	0,84	0,44	0,93	0,45
50	0,56	0,88	0,82	0,35	0,87	-0,02	0,72	0,88	0,19	0,92	0,88	-0,09
75	0,41	0,89	0,65	0,76	-0,05	0,82	0,44	0,88	0,13	0,66	0,65	0,66
95	0,34	0,83	0,18	0,79	0,36	0,92	0,69	0,92	0,27	0,75	0,75	0,60

Отмеченная в природных условиях стабильность величин отношения HCO_3^- ионов к компонентам солевого (анионно-катионного) состава в речном стоке, позволяет использовать их в качестве «фоновых эмпирических» коэффициентов для оценки антропогенной составляющей ионного стока. Величина антропогенной составляющей в ионном стоке р. Или при различных водностях года определен по формуле:

$$G^{i} = G_{\Sigma} - \frac{G_{HCO_{3}}}{K_{\phi}},$$

где, G^i — антропогенная составляющая стока рассматриваемого компонента солевого состава за расчетный период; G_Σ — суммарный вынос компонента солевого стока за расчетный период (включающий природную и антропогенную составляющие); $G_{HCO_3}^{-}$ — вынос гидрокарбонатного иона за расчетный период; K_ϕ — «фоновый» эмпирический коэффициент, равный отношению содержания гидрокарбонатных ионов к содержанию соответствующего компонента ионного состава в природных условиях, относительно которого отсчитывают нарастание антропогенной составляющей солевого стока.

Результаты расчетов представлены в табл. 1. Антропогенная составляющая ионного стока последовательно нарастает от маловодного к многоводному году, где их показатели варьируют в пределах 7...19 %. Например, при P=25 и 50 % суммарный солевой сток возрастает от 4,88 до 6,13 млн. т в год. Антропогенные составляющие ионного стока достигают в зависимости от водности года 15...19 %, при этом значительное изменение солевого состава р. Или наблюдается за счет ионов Mg^{2+} , SO_4^{2-} и CI^- . В среднемаловодном и маловодном годах с P=75 и 95 % антропогенная со-

ставляющая выноса ионов находится на уровне 7 %, преобладающие изменения солевого состава воды приходятся на долю ионов Cl⁻.

Таким образом, значительные изменения солевого стока Или под влиянием Капчагайского водохранилища произошли в многоводном году с P=25%, где антропогенная составляющая достигает 19%. Основные преобразования в ионном составе воды отмечаются независимо от водности года за счет ионов Mg^{2+} , SO_4^{2-} и Cl^- .

СПИСОК ЛИТЕРАТУРЫ

- Авакян А.Б., Кочарян А.Г. и др. Влияние водохранилищ на трансформацию химического стока рек. // Водные ресурсы, 1994, том 21, № 2. С. 144-153.
- 2. Бурлибаев М.Ж., Турениязова Ж.К. О некоторых результатах изменения гидрологического и гидрохимического режимов реки Или // Экологические проблемы водных ресурсов и орошаемых земель Казахстана: Сб. Статей. Алматы, 2000. С. 45-54.
- 3. Максимова М.П. Критерии оценки антропогенных изменений и расчет антропогенной составляющей ионнного стока рек. // Водные ресурсы, 1985. N = 3. C. 71-75.
- 4. Морозова Г.Н. Гидрохимический режим рек Или-Балхашского бассейна // Труды ГГИ. 1987. Вып. 326. С. 96-115.
- 5. Сороковикова Л.М. Трансформация главных ионов и минерализация воды р. Енисея в условиях зарегулированного стока // Водные ресурсы, 1993, том 20, № 3. С. 320-325.

РГП «Казгидромет»

ІЛЕ ӨЗЕНІНДЕГІ ИОНДЫҚ АҒЫНДЫЛАРДЫҢ АНТРОПОГЕНДІК ӨЗГЕРУІН БАҒАЛАУ

Ж.Қ. Турениязова

Іле өзенінің бөген арқылы көпжылдық реттелуі барысында иондық ағындының антропогендік өзгеру көрсеткіштері мол сулылықтан аз сулылық жылдарға қарай өсе түскен. Судың тұздық құрамындағы өзгерістер негізінен Mg^{2+} , SO_4^{2-} и Cl иондарының есебінен айқын байқалады.