

Гидрометеорология и экология

Научная статья

СОВРЕМЕННОЕ СОСТОЯНИЕ ВОДООБЕСПЕЧЕНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ И ПРИРОДНЫХ КОМПЛЕКСОВ НИЗОВИЙ РЕКИ ШУ

Турсун Т. Ибраев¹ к.т.н. $^{\Box}$, Марина А. Ли¹*к.т.н. $^{\Box}$, Нурлан Н. Бакбергенов² $^{\Box}$, Талгат К. Иманалиев² $^{\Box}$, Нурлан Н. Балгабаев² д.с-х.н. $^{\Box}$

 1 AO «Институт географии и водной безопасности», Алматы, Казахстан; kiwr-t@mail.ru (ТТИ), limarina76@mail.ru (МАЛ) 2 TOO «Казахский научно-исследовательский институт водного хозяйства», Тараз, Казахстан; bakbergenovnurlan@mail.ru (ННБ), tonimontana_777@mail.ru (ТКИ), balgabayev@mail.kz (ННБ)

КЛЮЧЕВЫЕ СЛОВА

водообеспеченность, водохозяйственная инфраструктура, натурные исследования, регулирование, управление

АБСТРАКТ

Полная зарегулированность и интенсивное хозяйственное использование стока бассейна реки Шу оказало значительное влияние на водный режим экосистемы низовий, ее флору и фауну, социально-бытовые и хозяйственно-экономические условия проживания населения. Причиной является дефицит воды, в особенности в маловодные годы, что также создает предпосылки для противоречий между государствами бассейнов трансграничных рек. В этой связи проведены натурные исследования с комплексным анализом, разработкой рекомендаций и мероприятий обеспечения рационального планирования водопользования и водораспределения в низовьях р. Шу. На основе результатов которых предлагается решение актуальных проблем сохранения сельскохозяйственных и природных комплексов речного бассейна.

По статье:

Получено: 03.06.2025 Пересмотрено:26.09.2025 Принято: 04.10.2025 Опубликовано: 08.10.2025

1. ВВЕДЕНИЕ

Низовья бессточной р. Шу представляют собой значительную часть Жамбылской области, в виде внутриконтинентальной многорукавной дельты с обилием естественных проток, серповидных и петлеобразных стариц, лиманов и вторичных пойменных озер. В многоводные годы весь этот регион покрывается водой на период весна-лето. Под влиянием глобального изменения климата и интенсивного антропогенного воздействия на данную территорию в низовьях р. Шу резко уменьшилась общая увлажненность речного бассейна. Что привело к регрессу количественных и качественных показателей речного стока реки, деградации водной системы дельты. Чрезмерное расширение площади орошаемых земель с низкой эффективностью использования водных ресурсов в бассейнах трансграничных рек, увеличение народонаселения за последние десятилетия привели к значительному росту водозабора из бассейнов рек Жамбылской области. Такое положение, и в особенности в маловодные годы, приводит к острому дефициту воды и создает предпосылки для противоречий между государствами бассейнов трансграничных рек. В этой ситуации больше всего страдают территории, расположенные в низовьях рек. Негативные последствия исчерпания водных ресурсов и снижения качества воды в низовьях р. Шу проявились, в основном, масштабным развитием катастрофической экологической ситуации на территории региона. Данный процесс воздействует на

^{*}Автор корреспондент: Марина А. Ли, limarina76@mail.ru

Для цитирования:

M., Ибраев T., Бакбергенов Н., Иманалиев Балгабаев Η. Современное состояние водообеспечения сельскохозяйственных природных комплексов низовий реки Шу Гидрометеорология экология, 119 (4), 2025, 22-34.

общее экономическое состояние сельскохозяйственных и природных комплексов (падение урожайности с/х культур, сокращение рыбного промысла, продуктивности водно-болотных угодий и т.д.) и усиление влияния маловодных лет на общую социально-экономическую ситуацию Жамбылской области [1].

В целом вопрос водообеспечения трансграничных рек является достаточно хорошо проработанным вопросом в мировом научном сообществе [2...11]. Однако, каждый речной бассейн имеет большое количество различных специфических условий и особенностей, оказывающих решающее воздействие на водообеспечение сельскохозяйственных и природных комплексов. Поэтому научно-исследовательские работы (НИР) по водообеспечению низовьев р. Шу являются в настоящее время актуальными. Кроме того, анализ отечественного и зарубежного опыта по нормированию антропогенной нагрузки на бассейны рек показал, что нет экологических норм, регламентирующих антропогенную нагрузку бассейнов, водообеспечение экосистемы речных отсутствует методология экологического нормирования. Имеющиеся предложения по нормам и критериям антропогенной нагрузки характеризуют лишь частное влияние отдельных видов хозяйственной деятельности; комплексные критерии несовершенны. Решение ряда проблемных вопросов затруднено из-за отсутствия системы экологического мониторинга, который основывался бы на детальных и длительных стационарных исследованиях антропогенного изменения элементов природной среды [12].

2. МАТЕРИАЛЫ И МЕТОДЫ

Река Шу образуется в Кыргызской Республике (КР) от слияния рек Кочкор и Джуанарык, берущих начало в высокогорном Тянь-Шане и имеющих снежноледниковое питание. В начале р. Шу течет в направлении озера Иссык-Куль, но, не достигая его в 8...10 км, поворачивает на запад, а затем на север и направляется в Боамское ущелье. По выходе из ущелья река, протекая по Шуйской долине, принимает ряд притоков, наиболее крупным из которых является р. Чонкемин. На границе с песчаной пустыней Мойынкум в реку с Кыргызского хребта впадает последний приток – р. Курагаты, которая питает воды р. Шу только в половодье (рисунок 1) [1].

Рисунок 1. Карта-схема бассейна р. Шу

Река Шу имеет пик половодья в июле — августе, при второстепенном влиянии дождевых вод на общий речной сток. Подземные воды значительно питают сток реки за счет процесса выклинивания лишь в меженный период. При этом большое влияние на сток р. Шу оказывает хозяйственная деятельность: водозаборы на орошение и

другие нужды отраслей экономики; строительство водохранилищ, прудов с существенными потерями на испарение с их поверхности и фильтрацию в ложе. Притоки бассейна р. Шу отличаются большим разнообразием водных режимов, типов питания и высот водосборов (таблица 1).

Таблица 1 *Характеристики притоков бассейна р. Шу*

Приток	Тип питания	Высота водосбора	Время половодья	Время начала межени		
Караконыз, Ыргайты	Снегово-дождевого	До 1.5 тыс. м	февраль-март	апрель-май		
Каракыстак, Мерке	Снегово-ледниковое	До 2.5 тыс. м	апрель	июнь		
Аспара	Ледниково-снеговое	Около 3 тыс. м	июль	-		
Курагаты	Смешанное	-	март-май	-		

По завершению вегетационного периода (сентябрь-октябрь), из-за прекращения водозабора в оросительные системы, расположенные в бассейне р. Шу, а также поступления в реку возвратных вод с орошаемых массивов, имеет место значительное увеличение стока в нижней части речного бассейна. При этом максимальные расходы зафиксированы в ноябре, по мере установления ледостава.

Вблизи с. Мойынкум Жамбылской области р. Шу замедляет свое течение и поворачивает на северо-запад. При этом ее русло разделяется здесь на несколько рукавов, которые в половодье образуют просторные Гуляевские (Фурмановские), Уланбельские и Камкалинские разливы. Половодье на р. Шу характеризуется относительно длительным и значительным увеличением водности реки с подъемом уровня воды, выходом вод из меженного русла и затоплением поймы (рисунок 2) [13].

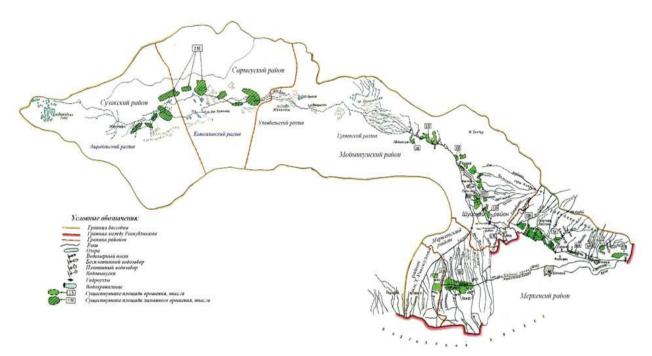


Рисунок 2. Водохозяйственные объекты бассейна р. Шу

В бассейне р. Шу на территории Казахстана насчитывается 201 озеро, площадь водного зеркала которых равна 238 км 2 . Из них 192 озера с площадью зеркала 222 км 2 относятся бассейну р. Шу, а остальные -9 озер, с площадью зеркала -15.8 км 2 , расположены в междуречье Шу-Талас. Вода в большинстве озер (около 80 %) пресная,

соленые озера составляют приблизительно 20%. Небольшие озера в летнее время пересыхают [12].

В бассейне реки функционирует 17 водохранилищ, больших и малых с суммарной полезной емкостью около 580 млн м³. Самое крупное водохранилище: Тасоткельское на р. Шу (W_{полез} = 551 млн м³) используется для орошения. Для орошения и обводнения пастбищ используются мелкие водохранилища (емкостью менее 1 км³) и пруды, общий объем которых составляет 4.03 млн м³ [14]. Основной регулирующей емкостью бассейна р. Шу на территории Казахстана является Тасоткельское водохранилище — водохозяйственный объект республиканского значения РК, расположенное в средней части Шуской долины (40 км от с. Толе би). Основные технические характеристики Тасоткельского водохранилища: классность — ІІ, год ввода в эксплуатацию — 1975, объем при НПУ — 620 млн м³, вид регулирования и назначения — сезонное, пропускная способность сооружения — 360 м³/с. Назначение водохранилища — обеспечение поливной водой 104.2 тыс га орошаемых земель и залив 100 тыс га сенокосных угодий Шуйского, Мойынкумского районов Жамбылской области, а также обеспечение водой 30 тыс га сенокосов и 150 тыс га пастбищ и улучшение экологической обстановки Созакского района Туркестанской области [15].

По делению казахстанской части р. Шу от с. Мойынкум начинаются низовья, которые представляют собой вытянутое понижение местности, занятое долинами р. Шу с многочисленными протоками, рукавами, озерами, обширными разливами, общей протяженностью около 450 км, простирающееся на северо-запад от с. Мойынкум к низовьям р. Сарысу. Ниже с. Мойынкум река Шу не имеет единого и четкого выраженного русла и теряется в зарослях тростника, образуя три обособленные группы разливов, соединенных узкими горловинами: Гуляевские разливы общей протяженностью около 130 км и шириной до 25 км; Уланбельские — протяженностью 80 км и шириной до 20 км, а также Камкалинские разливы протяженностью около 100 км и шириной 30 км [14].

Гуляевские разливы являются территорией аккумуляции стока реки, которая ежегодно до 8 месяцев в году находится в затопленном состоянии, и именно здесь теряется наибольшая часть стока р. Шу (инфильтрация, испарение и транспирация). Большую часть стока реки Гуляевские разливы накапливают в зимний период (наледные явления).

Уланбельские разливы в отдельные годы аккумулируют зимний сток и отличаются значительной засоленностью территорий, в сравнении с площадью Гуляевских разливов. Району Уланбельских разливов свойственны многочисленные озера (сравнительно крупные Караколь, Жаланаш, Лебяжье и др.), развитые соры (мелководные солончаки), солонцы (почвы насыщенные растворимыми солями) и песчаных бугров.

В Камкалинские разливы воды попадают только в весенний период, при этом большое значение имеет поступление грунтовых вод, что определяет высокую засоленность земель.

Ниже моста с. Тасты низовья р. Шу являются территорией конечного стока речного бассейна, которая отличается узкой поймой редко затапливаемой водой, полностью отсутствуют разливы.

Глобальное изменение климата и интенсивное антропогенное воздействие оказало огромное негативное влияние на дельтовую область р. Шу. В настоящее время перемещение поверхностных водных ресурсов от разлива к разливу чрезвычайно затруднено, т.к. наряду с общим сокращением речного стока быстро растет объем водопотребления отраслей экономики и растущего населения региона.

С увеличением стока в зимний период вода в основном накапливается в виде льда на обширной территории Фурмановской дельты, что приводит к недостаточным объемам воды на нижерасположенных разливах. Остаточный зимний сток в

Уланбельской дельте в последующих разливах сильно задерживается и зачастую полностью отсутствует, что приводит к возникновению процессов опустынивания и деградации почвенного покрова, растительности, обеднения животного мира. В дельтовой области р. Шу весь речной сток постепенно теряется на испарение и фильтрацию, используется на транспирацию влаголюбивой растительностью.

В 1973...1987 гг., при совпадении естественного сокращение речного стока с резким ростом хозяйственной деятельности, отмечен аномально маловодный период р. Шу, приведший к уменьшению притока в Фурмановскую дельту до 50...60 %, в Уланбельскую – до 20...30 %, по сравнению со среднемноголетним периодом, в Камкалинской дельте сток практически отсутствовал [1]. Это привело к высыханию, опустыниванию и деградации природной речной экосистемы низовьев р. Шу. Увеличение речного стока в последующие годы вызвало лишь частичное восстановление экосистем низовьев р. Шу. При этом не достигнуто их первоначальное состояние, поэтому определение современного уровня и прогноз дальнейшего развития или деградации природно-хозяйственных комплексов представляет большой интерес.

Проведенное натурное исследование сельскохозяйственных и природных комплексов низовий р. Шу позволило оценить их современное состояние и пути сохранения речной экосистемы. Оно позволяет оперативно получить достоверные и полные данные, а не полагаться только на результаты лабораторных экспериментов или теоретические модели. Полученные результаты натурных исследований состояния сельскохозяйственных и природных комплексов низовий р. Шу послужат практических дополнением имеющихся теоретических материалов. Это будет содейстовать реализации последующих задач оценки водообеспечения сельскохозяйственных и природных комплексов низовий реки.

Согласно данных водохозяйственных организаций [14, 15] до 50 % от общего водозабора на сельское хозяйство, и соответственно до 30 % от располагаемых водных ресурсов низовьев р. Шу приходится на орошаемое земледелие. Что дает возможность для уменьшения этого показателя путем внедрения водосберегающих технологий и различных мероприятий по рациональному использованию воды. В этой связи при проведении исследований водообеспечения сельскохозяйственных и природных комплексов особое внимание уделялось орошаемому земледелию в бассейне р. Шу.

В пределах территории Казахстана р. Шу протекает через Кордайский, Шуйский и Мойынкумский районы Жамбылской области, а также Созакский район Туркестанской области. В бассейне р. Шу функционирует: 3 водохранилища; 4 гидроузла; 1 плотина (таблица 2); 18 магистральных каналов, пропускная способность — 198.7 м³/с, общая длина — 437.193 км, в том числе земляные каналы — 308.023 км, бетонированные каналы — 129.17 км, подвешенная площадь - 53033 га; 113 межхозяйственных каналов, пропускная способность — 127.98 м³/с, общая длина — 754.143 км, в т.ч. земляные каналы — 443.902 км, бетонированные каналы — 310.241 км, подвешенная площадь - 62047 га; 16 внутрихозяйственных каналов (на балансе Жамбылского филиала РГП «Казводхоз»), пропускная способность — 7.45 м³/с, общая длина — 76.408 км, в т.ч. земляные каналы — 7.047 км, бетонированные каналы — 69.361 км, подвешенная площадь - 4526 га [14].

Водохозяйственная инфраструктура бассейна р. Шу отличается большим количеством гидротехнических сооружений (ГТС) со степенью износа 4...88 %, что свидетельствует о необходимости проведения капитального ремонта и реконструкции на сооружениях [14].

На границе Казахстана и Кыргызстана трансграничный Чумышский гидроузел распределяет воду в Георгиевский магистральный канал. для орошения земель Кордайского района Жамбылской области (рисунок 3).

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Трансграничный характер бассейна р. Шу определяет вододеление водных ресурсов между странами в соотношении: 42 % получает Республика Казахстан, 58 % Кыргызская Республика, а сотрудничество осуществляется на основании специального соглашения [16], Лимиты подачи воды по р. Шу на вегетационный период постоянно корректируются в зависимости от водности года, однако казахстанская сторона систематически недополучает необходимый объем воды (таблица 3) [17].

 Таблица 2

 Технические характеристики ГТС бассейна р. Шу [14]

				B	эксплуатацию	Объем при НПУ млн м ³			м³/с		зеркала,	a, %
Nº	Наименование	Классность	Водоисточник	Год ввода		полный	полезный	Назначение	Пропускная способность, м	Подвешенная площадь, га	Площадь зе ₎ км²	Степень износа,
водо	хранилища											
1	Тасоткельское	I	р. Шу	1974		620	551	Ирригация	360	34,53	77,6	13
2	Караконыз	II	р. Караконыз	1986		8,5	6,73	Ирригация	5	2,8	0,69	22
3	Какпатас	IV	р. Какпатас	1988		10,3	9,4	Ирригация	5	0,67	1,44	35
гидр	оузлы											
1	Меркенский	IV	р. Мерке	1967		-	-	Ирригация	65	5,382	-	80
2	Аспаринский	IV	р. Аспара	1965		-	-	Ирригация	40	4,088	-	88
3	Каракыстакский	IV	р. Каракыстак	1984		-	-	Ирригация	38	2,794	-	4
4	Фурмановский	IV	р. Шу	1985		-	-	Ирригация	356	-	-	26
плоп	плотины											
1	Тасоткельская	IV	р. Шу	1941		-	-	Ирригация	350	13,61	-	54

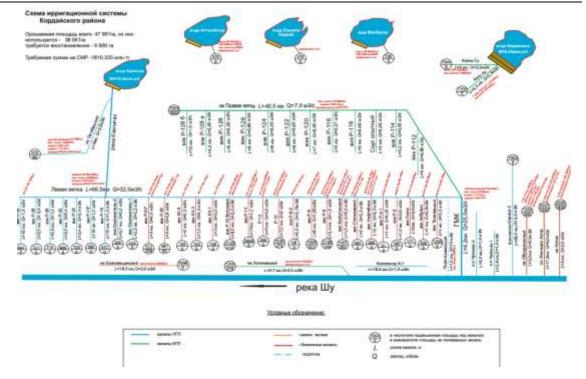


Рисунок 3. Схема ирригационной системы Кордайского района [14]

В связи с систематическим недополучением необходимых объемов воды в вегетационный период водоснабжение отраслей экономики и удовлетворение потребностей орошаемого земледелия в бассейне р. Шу крайне нестабильно.

Таблица 3Объемы воды поступившые в Казахстан по межгосударственным объектам р. Шу

П	Год										
Показатели	2018	2019	2020	2021	2022	2023	2024				
Лимитный объем, млн ${\rm M}^3$	370	370	370	370	370	370	370				
Фактический объем, млн ${\rm M}^3$	163.5	203.1	178.5	151.7	176	135.7	138.2				
Недобор, %	44	55	48	41	47	37	37				
Недобор, млн M^3	206.5	166.9	191.5	218.3	194	234.3	231.8				

Для решения данной проблемы необходимы следующие мероприятия:

- аккумуляция водных ресурсов в водохранилищах, с увеличением их объема путем реконструкции и строительства новых водохранилищ;
 - использование возобновляемых источников подземных вод;
- применение водосберегающих технологий и техники полива (капельное орошение, дождевание, подземное орошение и др.) и внедрение менее влагоемких сельхозкультур;
- снижение непроизводительных потерь воды при транспортировке путем реконструкции и строительства новых оросительных систем;
 - соблюдение севооборота на орошаемых полях.

Распределение годового стока в среднем по водности году по бассейну р. Шу следующее: суммарный сток -2790 млн м³, сток, поступающий из территории Кыргызской Республики -2316 млн м³, сток, формирующийся в пределах Жамбылской области -474 млн м³ [14].

В пределах территории Казахстана сток реки Шу фиксировался на следующих гидрометрических постах (ГП): с. Кайнар, с. Ташуткуль (до 2022 г.), с. Уланбель (Большая Арна), с. Уланбель (Малая Арна).

За период 2019...2024 гг. годовой сток (объем стока) р. Шу изменялся в пределах:

- $-\Gamma\Pi$ Кайнар 1593...1470 млн м³ (разница 123 млн м³ или 7.7 % от максимального значения), средний за период 1388 млн м³, т.е. годовой сток характеризуется относительной стабильностью;
- ГП Ташуткуль 1896...1747 млн м³ (разница 145 млн м³ или 7.6 % от максимального значения), средний за период 1799 млн м³, т.е. годовой сток стабилен;
- с. Уланбель (Большая Арна) 842...199 млн м³ (разница 643 млн м³ или 76.4 % от максимального значения), средний за период 437 млн м³, т.е. годовой сток изменяется в больших пределах, с резкими перепадами, что отрицательно влияет на водообеспечение природно-хозяйственных комплексов речного бассейна;
- с. Уланбель (Малая Арна) 195...13 млн м³ (разница 182 млн м³ или 93.3 % от максимального значения), средний за период 93 млн м³, т.е. годовой сток изменяется в больших пределах, с резкими перепадами, что отрицательно влияет на водообеспечение природно-хозяйственных комплексов речного бассейна.

Баланс р. Шу за период 2019...2024 г. (таблица 4) показал, что ситуация с водообеспечением природно-хозяйственных комплексов речного бассейна только в начальной части отличается относительной стабильностью, в нижней части водообеспечение следует признать не удовлетворительным. Это объясняется тем, что поступающего стока реки, вследствие маловодности, недостаточно для поддержания функционирования экосистемы низовьев, и последние годы отмечаются признаки деградации водно-болотных угодий.

Таблица 4Баланс р. Шу за период 2019...2024 г., млн. м³ [14]

		1.Приходная часть							2.Расходная часть					
Год	Сток, поступающий на участок	Сток, формирующий на участке	Забор подземных вод	Регулирования стока сработка вдхр	Поступление воды на участок извне	Всего	Безвозвратное водопотребление	Испарение с поверхности вдхр	Подача воды за пределы участка	Обязательные попуски	Наполнение вдхр	Всего		
2019	2253.9	65.1	100.0	40.8	288.3	2658.1	412.1	128.9	593.0	1524.1	0	2658.1		
2020	2013.0	1173.0	11.0	4.5	292.5	2438.3	484.3	118.6	380.0	1455.4	0	2438.3		
2021	1688.3	61.3	11.1	0	292.5	2053.2	558.2	110.3		1384.7	0	2053.2		
2022	1680.5	263.9	11.6	210.9	244.3	2411.2	521.8	114.9		1774.5	0	2411.2		
2023	1565.2	140.0	12.2	0	140.9	1858.3	587.1	64.0		1029.2	178.0	1858.3		
2024	1926.1	115.1	14.1	0	102.2	2157.5	695.3	24.6		1420.8	16.8	2157.5		

График располагаемых и используемых водных ресурсов (рисунок 4) показали следующее:

- объем располагаемых водных ресурсов речного бассейна в пределах территории Казахстан имеет устойчивую тенденцию на постоянное уменьшение от 2658.1 до 2157.5 млн м³, приблизительно на 20 %, и в перспективе следует ожидать дальнейшего сокращения этого показателя, что может оказать неблагоприятно воздействия на состояние сельскохозяйственных и природных комплексов низовий реки Шу;
- водопотребление в речном бассейне за рассматриваемый период значительно увеличивается от 412.1 до 695.3 млн м³, также приблизительно на 40 %, что составляет около 22 % от объема располагаемых водных ресурсов, но в перспективе следует ожидать роста этого показателя и соответствующего уменьшения объема попусков в низовья р. Шу;
- объем обязательных попусков в низовья р. Шу немного уменьшается от 1524.1 до 1420.8 млн м³, приблизительно на 7 %, что, в первую очередь связано с общей тенденцией постоянного уменьшения объема располагаемых водных ресурсов речного бассейна, хотя и в большей степени, чем общее уменьшение водных ресурсов, здесь сказывается увеличение водопотребления отраслями экономики;
- подача за пределы речного бассейна и потери воды также уменьшаются от 721.9 до 41.4 млн м³, приблизительно в 17 раз, под влиянием уменьшения объема располагаемых водных ресурсов речного бассейна и роста водопотребления.

Следует признать, что водообеспечение природно-хозяйственных комплексов бассейна р. Шу в пределах территории Казахстана постоянно ухудшается, что связано в первую очередь с общим уменьшением стока реки, а только во вторую — с увеличением водопотребления в речном бассейне. Это требует разработки и применения широкомасштабных водохозяйственных мероприятий по эффективному использованию водных ресурсов для сохранения и восстановления сельскохозяйственных и природных комплексов речного бассейна.

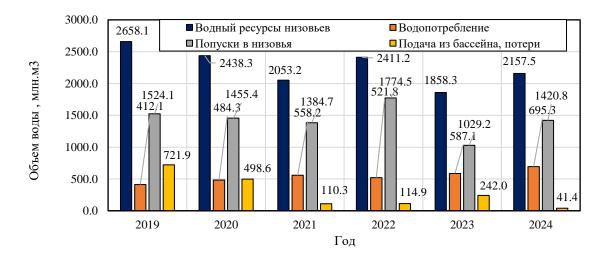


Рисунок 4. Годовой сток р. Шу в пределах территории Казахстана

Водохозяйственный баланс бассейна р. Шу 2024 г. характеризуется приходной частью общим объемом 2157500 тыс m^3 , из которых 1926100 тыс m^3 (89 %) - сток, поступивший в бассейн р. Шу из Кыргызстана; 115100 тыс m^3 (5.3 %) — сток, сформировавшийся на территории Казахстана; 102200 тыс m^3 (4.7 %) — сток, поступивший из других речных бассейнов; 14100 тыс m^3 (0.7%) — забор подземных вод (остальное другие источники). Определяющим фактором поступления воды в низовья р. Шу являются трансграничный водные ресурсы, при малых объемах из других водоисточников.

Расходная часть состоит из обязательных попусков в низовья реки - 142800 тыс м³ (66 %); безвозвратного водопотребления — 695300 тыс м³ (32 %); наполнения водохранилищ — 16800 тыс м³ (0.8 %); испарение с поверхности водохранилищ — 24600 тыс м³ (1.1 %). При этом весомую часть составляют использование водных ресурсов на нужды населения и производства, а также многолетнее регулирование и потери, что значительно уменьшает долю водообеспечения природных комплексов низовьев речного бассейна.

Основными потребителями водных ресурсов бассейна р. Шу являются сельское хозяйство, в том числе залив сенокосов, орошаемое земледелие, животноводство, рыбное хозяйство, а также коммунальное хозяйство, производственные нужды и энергетика. Отраслью экономики не потребляющее, а пользующиеся водой является гидроэнергетика.

В 2024 г. основные показатели забора и использования водных ресурсов р. Шу показали, что при общем объеме забора воды в 1538396.2 тыс м³, сельское хозяйство забирает 1523766.1 тыс м³ (99 %), на коммунальное хозяйство – 9326.7 тыс м³ (0.6 %), на производственные нужды – 5299.9 тыс м³ (0.3 %). В определяющем объеме водопотребления на сельское хозяйство большую часть подается на залив сенокосов – 1013137.3 тыс м³ (66.5 %), а на регулярное орошение – 510628.8 тыс м³ (33.5 %) или 33.2 % от общего забора водных ресурсов р. Шу. Следует отметить большой объем потерь при транспортировании водных ресурсов в бассейне р. Шу равного 616191.0 тыс м³ (40.1 %), что дает возможность для эффективного внедрения различных инженерно-технических мероприятий по уменьшению этого показателя.

Анализ динамики изменения общего забора и использования водных ресурсов в бассейне р. Шу за период 2019...2024 гг. показал значительное уменьшение: забора воды от 1639511.8 тыс \mathbf{m}^3 до 1224968 тыс \mathbf{m}^3 , на 25 %; использование воды, от 1198169.3 тыс \mathbf{m}^3 до 729919.2 тыс \mathbf{m}^3 , на 39 %; однако потери при транспортировании воды возросли, от 439771.2 тыс \mathbf{m}^3 до 495048.8 тыс \mathbf{m}^3 , на 12.6 %.

Приведенные данные свидетельствуют в первую очередь о негативном влиянии процесса уменьшения стока р. Шу на забор и использование водных ресурсов на нужды населения и производства региона. И хотя объем забора и использования водных ресурсов составляет в среднемноголетнем разрезе порядка 22 % от общей величины располагаемых водных ресурсов бассейна р. Шу, его можно уменьшить на 20...30 % за счет внедрения водосберегающих технологий и различных мероприятий по рациональному использованию воды.

Особого внимание заслуживает динамика использования водных ресурсов в сельском хозяйстве бассейна р. Шу за период 2019...2024 гг.: объем водопользования в сельском хозяйстве стабильно уменьшается от 1627953.2 тыс м³ до 1212819 тыс м³, на 25.5 %; залив сенокосов от 1217100 тыс м³ до 655400 тыс м³, на 46.2 %; возрос объем воды на регулярное орошение от 409917 тыс м³ до 557418.4 тыс м³, на 36 %. При этом водопотребление на регулярное орошение составляло 25.2...46.0 % от общего водозабора на сельское хозяйство, и соответственно 15.4...30 % от водных ресурсов низовьев р. Шу.

Здесь также сказывается негативное влияние процесса уменьшения стока р. Шу на использование водных ресурсов в сельском хозяйстве. При этом доля объем забора и использования водных ресурсов на регулярное орошение постоянно возрастает, что сокращает водообеспечение животноводства за счет уменьшения залива сенокосов. За период 2019...2024 гг. доля водопотребления на регулярное орошение бассейна р. Шу возросла почти в 2 раза от общего водозабора на сельское хозяйство и от общих водных ресурсов низовьев речного бассейна. Этот факт свидетельствует о необходимости скорейшего и широкого внедрения водосберегающих технологий и различных мероприятий по рациональному использованию воды, в свете дальнейшего сокращения стока р. Шу и роста потерь воды при орошении сельхозкультур.

4. ЗАКЛЮЧЕНИЕ

Полная зарегулированность и интенсивное хозяйственное использование стабильно уменьшающегося стока р. Шу, наряду с сокращением сельскохозяйственного производства и ухудшением среды проживания населения региона, приводят к необратимым последствиям для окружающей среды, выражаемых деградацией озерных систем и пойменных лесов, понижением уровня грунтовых вод и пересыханием родников, сокращением площадей заливных лугов, пойменных пастбищ, с ускорением процесс опустынивания, со значительным сокращением потенциала биологической продуктивности речной экосистемы.

Водохозяйственной инфраструктуре бассейна р. Шу свойственны большое количество гидротехнических сооружений со степенью износа до 88 %, каналы оросительных систем в земляном русле с КПД до 0.3, что требует широкого внедрения водосберегающих технологий и всевозможные мероприятия по рациональному использованию водных ресурсов.

Водообеспечение природно-хозяйственных комплексов бассейна р. Шу в пределах территории Казахстана постоянно ухудшается, что связано в первую очередь с общим уменьшением стока реки, а только во вторую — с увеличением водопотребления в речном бассейне. Расходная часть за 2024 г. состоит из обязательных попусков в низовья реки — 55 %; безвозвратного водопотребления — 31.6 %; наполнения водохранилищ — 9.6 %; испарение с поверхности водохранилищ — 3.4 %.

Анализ динамики изменения водохозяйственной обстановки в бассейне р. Шу за период 2019...2024 гг. показал, что объем забора и использования водных ресурсов составляет в среднем порядка 22 % от общей величины располагаемых водных ресурсов. Это свидетельствуют в первую очередь о негативном влиянии процесса уменьшения стока р. Шу на забор и использование водных ресурсов на нужды населения и производства региона. Использование водных ресурсов в сельском

хозяйстве бассейна р. Шу за период 2019...2024 гг. уменьшился на 25.5 %, залив сенокосов на 46.2 %, зато возрос объем воды на регулярное орошение на 36 %, при этом водопотребление на регулярное орошение составляло 25.2...46.0 % от общего водозабора на сельское хозяйство, и соответственно 15.4...30.0% от водных ресурсов р. Шу.

Для решения водохозяйственных проблем в низовьях р. Шу рекомендуется:

- в краткосрочной перпективе: проведение инвентаризации и паспортизации водохозяйственных объектов, введение современной тарифной политики, контроль соблюдения Положения о вододелении со стороны КР, .создание центров обучения передовым технологиям;
- в долгосрочной песрпективе: повышение эффективности использования водных ресурсов, сокращение непроизводительных потерь воды, улучшение технического состояния водохозяйственной инфраструктуры, внедрение систем учета использования воды, автоматизации водоучета и управления водными ресурсами, использование передовых водосберегающих технологий и способов полива.

Приведенные рекомендации по решению водохозяйственных проблем низовьев р. Шу позволят уменьшить негативное воздействие общепланетарного потепления климата, длительного маловодья и неуклонного сокращения стока рек. Если их планомерно не решать, то велика вероятность возникновения водного стресса в бассейне р. Шу, ухудшение продовольственной безопасности региона и в целом всей страны, а также появления риска межгосударственных водных конфликтов в ближайшей перспективе.

ДОСТУПНОСТЬ ДАННЫХ

Данные, использованные в этом исследовании, получены авторами из открытых источников РГП «Казводхоз».

ВКЛАД АВТОРОВ

Концептуализация - ННБ; управление данными - ТТИ; формальный анализ - ТКИ; методология -ТТИ, МАЛ; программное обеспечение - МАЛ; отслеживание - МАЛ; визуализация -ННБ; написание исходного проекта - ТТИ; написание и редактирование обзора - МАЛ.

ФИНАНСИРОВАНИЕ

Научно-исследовательские работы выполнены при финансовой поддержке Комитета науки Министерства науки и высшего образования Республики Казахстан (грант N_{\odot} AP23488693).

СПИСОК ЛИТЕРАТУРЫ

- 1 Оценка потребностей для сохранения важных глобально значимых водно-болотных угодий в бассейне реки Шу (в пределах территории Казахстана) // Отчет о научно-исследовательской работе. Офис программ ОБСЕ в Астане. Астана, 2023. 104 с.
- 2 Sahana M., Dhali M.K., Lindley S. (2024). Global disparities in transboundary river research have implications for sustainable management. Communications Earth & Environment. Vol. 5, N 786. DOI: 10.1038/s43247-024-01928-0.
- 3 Yu Y., Bo Y., Castelletti A. (2024). Transboundary cooperation in infrastructure operation generates economic and environmental co-benefits in the Lancang-Mekong River Basin. Nature Water. Vol. 2. pp. 589–601. DOI: 10.1038/s44221-024-00246-1.
- 4 Mohammed Y.A., Acer Y. (2024). Management of Transboundary Watercourse in Euphrates-Tigris and Nile River Basins. Land and Water Degradation in Ethiopia. Springer Geography. Springer, Cham. pp. 341–360. DOI: 10.1007/978-3-031-60251-1_15.
- 5 Arfa A., Ayyoubzadeh S.A., Shafizadeh-Moghadam H. (2025). Transboundary hydropolitical conflicts and their impact on river morphology and environmental degradation in the Hirmand Basin, West Asia. Sci Rep. Vol. 15, № 2754. DOI: 10.1038/s41598-024-84501-1.
- 6 Mahmoodzadeh D., Morid S. Ketabchi H. (2025). Assessment of water resources sustainability under unilateral development projects using WEAP model in transboundary river basins. Environ Sci Pollut Res. Vol. 32. pp. 6130–6152. DOI: 10.1007/s11356-025-36063-6.
- 7 Fu J., Lu T., Xu B. (2024). Water Resources Allocation in a Transboundary River Based on a Rubinstein Bargaining Model. Water Resour Manage. Vol. 38. pp. 639–663. DOI: 10.1007/s11269-023-03691-x.
- 8 Sivokhip Z.T., Chibilev A.A. (2022). Transboundary River Basins: Basic Principles for Solving the Problems of Interstate Cooperation. Geogr. Nat. Resour. Vol. 43. pp. 218–227. DOI: 10.1134/S1875372822030118.

- 9 Ibrayev T., Li M., Bakbergenov N., Panenka P., Batyrbayeva A. (2022). Problems of the use of water resources and the ways of their solution in Kazakhstan. NEWS of the National Academy of Sciences of the Republic of Kazakhstan. Series of geology and technical sciences. Vol. 4, № 454. pp. 69–80. DOI: 10.32014/2022.2518-170X.201.
- 10 Faraz Ul Haq, Ahma, I., Khan N.M. (2024). Climate Change, Water Variability, and Cooperation Along Transboundary River Basins in Perspective of Indus Water Treaty. The Water, Climate, and Food Nexus. Springer, Cham. pp. 457–473. DOI: 10.1007/978-3-031-50962-9 20.
- 11 Jaiswal H., Kumar P. (2025). Transboundary Rivers of South Asia: Issues and Challenges. Land and Water Nexus in South Asia. Advances in Asian Human-Environmental Research. Springer, Cham. pp. 137-179. DOI: 10.1007/978-3-031-87429-1_5.
- 12 Переход к интегрированному управлению водными ресурсами (ИУВР) в низовьях и дельтах рек Амударьи и Сырдарьи // Предварительное обоснование. Научно-информационный центр Межгосударственная координационная водохозяйственная комиссия Центральной Азии (НИЦ МКВК). Ташкент, 2005. 198 с.
- 13 Дускаев К.К, Жанабаева Ж.А. Природоохранные и экологические попуски как основа в сохранении водных экосистем в нижнем течении рек // Вестник казахстанско-немецкого университета: Устойчивое развитие Центральной Азии. №2 (4). Алматы, 2014. С. 168–171.
- 14 Отчеты о заборе, использовании и водоотведении вод // Жамбылский филиал Республиканского государственного предприятия «Казводхоз». Тараз, 2019–2024 гг.
- 15 Схема комплексного использования и охраны водных ресурсов бассейна р. Шу. (Обновление СКИОВР 2007 г.) // Сводная записка. ПК «Институт Казгипроводхоз». Алматы, 2017. 133 с.
- 16 Соглашения между Правительством Республики Казахстан и Правительством Кыргызской Республики об использовании водохозяйственных сооружений межгосударственного пользования на реках Шу и Талас // Астана, 2000. 2 с.
- 17 Положения о делении стока р. Чу // Министерство мелиорации и водного хозяйства СССР от 24.02.1983 г. М., 1983. 7 с

REFERENCES

- 1 Ocenka potrebnostej dlya sohraneniya vazhnyh global'no znachimyh vodno-bolotnyh ugodij v bassejne reki SHu (v predelah territorii Kazahstana) [Assessment of needs for the conservation of globally important wetlands in the Shu River basin (within the territory of Kazakhstan)] (2023). Otchet o nauchno-issledovatel'skoj rabote. Ofis programm OBSE v Astane [in Russian].
- 2 Sahana M., Dhali M.K., Lindley S. (2024). Global disparities in transboundary river research have implications for sustainable management. Communications Earth & Environment. Vol. 5, № 786. DOI: 10.1038/s43247-024-01928-0.
- 3 Yu Y., Bo Y., Castelletti A. (2024). Transboundary cooperation in infrastructure operation generates economic and environmental co-benefits in the Lancang-Mekong River Basin. Nature Water. Vol. 2. pp. 589–601. DOI: 10.1038/s44221-024-00246-1.
- 4 Mohammed Y.A., Acer Y. (2024). Management of Transboundary Watercourse in Euphrates-Tigris and Nile River Basins. Land and Water Degradation in Ethiopia. Springer Geography. Springer, Cham. pp. 341–360. DOI: 10.1007/978-3-031-60251-1_15.
- 5 Arfa A., Ayyoubzadeh S.A., Shafizadeh-Moghadam H. (2025). Transboundary hydropolitical conflicts and their impact on river morphology and environmental degradation in the Hirmand Basin, West Asia. Sci Rep. Vol. 15, № 2754. DOI: 10.1038/s41598-024-84501-1.
- 6 Mahmoodzadeh D., Morid S. Ketabchi H. (2025). Assessment of water resources sustainability under unilateral development projects using WEAP model in transboundary river basins. Environ Sci Pollut Res. Vol. 32. pp. 6130–6152. DOI: 10.1007/s11356-025-36063-6.
- 7 Fu J., Lu T., Xu B. (2024). Water Resources Allocation in a Transboundary River Based on a Rubinstein Bargaining Model. Water Resour Manage. Vol. 38. pp. 639–663. DOI: 10.1007/s11269-023-03691-x.
- 8 Sivokhip Z.T., Chibilev A.A. (2022). Transboundary River Basins: Basic Principles for Solving the Problems of Interstate Cooperation. Geogr. Nat. Resour. Vol. 43. pp. 218–227. DOI: 10.1134/S1875372822030118.
- 9 Ibrayev T., Li M., Bakbergenov N., Panenka P., Batyrbayeva A. (2022). Problems of the use of water resources and the ways of their solution in Kazakhstan. NEWS of the National Academy of Sciences of the Republic of Kazakhstan. Series of geology and technical sciences. Vol. 4, № 454. pp. 69–80. DOI: 10.32014/2022.2518-170X.201.
- 10 Faraz Ul Haq, Ahma, I., Khan N.M. (2024). Climate Change, Water Variability, and Cooperation Along Transboundary River Basins in Perspective of Indus Water Treaty. The Water, Climate, and Food Nexus. Springer, Cham., pp. 457–473. DOI: 10.1007/978-3-031-50962-9_20.
- 11 Jaiswal H., Kumar P. (2025). Transboundary Rivers of South Asia: Issues and Challenges.Land and Water Nexus in South Asia. Advances in Asian Human-Environmental Research. Springer, Cham. pp. 137-179. DOI: 10.1007/978-3-031-87429-1_5.
- 12 (2005). Perekhod k integrirovannomu upravleniyu vodnymi resursami (IUVR) v nizov'yah i del'tah rek Amudar'i i Syrdar'I [Transition to integrated water resources management (IWRM) in the lower reaches and deltas of the Amu Darya and Syr Darya rivers]. Predvaritel'noe obosnovanie. Nauchno-informacionnyj centr Mezhgosudarstvennaya koordinacionnaya vodohozyajstvennaya komissiya Central'noj Azii (NIC MKVK), Tashkent, 2005. 198 p. [in Russian].
- 13 Duskaev K.K, Zhanabaeva Zh.A. (2014). Prirodoohrannye i ekologicheskie popuski kak osnova v sohranenii vodnyh ekosistem v nizhnem techenii rek [Environmental and ecological permits as the basis for preserving aquatic ecosystems in the lower reaches of rivers]. Vestnik kazahstansko-nemeckogo universiteta: Ustojchivoe razvitie Central'noj Azii, 2 (4), pp.168-171 [in Russian].
- 14 (2014-2024) Otchety o zabore, ispol'zovanii i vodootvedenii vod (2019-2024) [Reports on water abstraction, use, and discharge]. ZHambylskij filial Respublikanskogo gosudarstvennogo predpriyatiya «Kazvodhoz». Taraz [in Russian].
- 15 (2024). Skhema kompleksnogo ispol'zovaniya i ohrany vodnyh resursov bassejna r. Shu [Scheme for the comprehensive use and protection of water resources in the Shu River basin.]. (Obnovlenie SKIOVR 2007). Svodnaya zapiska. PK «Institut Kazgiprovodhoz». Almaty, 133 p. [in Russian].
- 16 (2000). Soglasheniya mezhdu Pravitel'stvom Respubliki Kazahstan i Pravitel'stvom Kyrgyzskoj Respubliki ob ispol'zovanii vodohozyajstvennyh sooruzhenij mezhgosudarstvennogo pol'zovaniya na rekah SHu i Talas [Agreements between the Government of the Republic of Kazakhstan and the Government of the Kyrgyz Republic on the use of interstate water management facilities on the Shu and Talas rivers] (2000). 2 p.[in Russian].
- 17 (1983). Polozheniya o delenii stoka r. CHu [Provisions on the division of the flow of the Chu River [(1983). Ministerstvo melioracii i vodnogo hozyajstva SSSR ot 24.02.1983 g., M. 7 p. [in Russian].

ШУ ӨЗЕНІНІҢ ТӨМЕНГІ ЖЕРЛЕРІНДЕГІ АУЫЛ ШАРУАШЫЛЫҒЫ ЖӘНЕ ТАБИҒИ КЕШЕНДЕРДІҢ ҚАЗІРГІ ЖАҒДАЙЫ

Тұрсын Т. Ыбыраев¹ т.ғ.к., Марина А.Ли¹ т.ғ.к., Нұрлан Н. Бақбергенов², Талғат Қ., Иманалиев², Нұрлан Н. Балғабаев² а-ш.ғ.д.

- ¹ «География және су қауіпсіздігі институты », Алматы, Қазақстан; kiwr-t@mail.ru, limarina76@mail.ru
- ² «Қазақ су шаруашылығы ғылыми зерттеу институты», Тараз, Қазақстан; bakbergenovnurlan@mail.ru, tonimontana_777@mail.ru, balgabayev@mail.kz
- *Автор корреспондент: Марина А. Ли, limarina76@mail.ru

ТҮЙІН СӨЗДЕР

сумен қамтамасыз ету, су шаруашылығы инфрақұрылымы, далалық зерттеулер, реттеу, басқару

Мақала жайында:

Жіберілді: 03.06.2025 Қайта қаралды: 26.09.2025 Қабылданды: 04.10.2025 Жарияланды: 08.10.2025

АБСТРАКТ

Шу өзені бассейні ағынының толық реттелуі және қарқынды шаруашылық пайдаланылуы төменгі ағысының экожүйесінің су режиміне, оның флорасы мен фаунасына, халықтың әлеуметтік-тұрмыстық және шаруашылық-экономикалық өмір сүру жағдайларына айтарлықтай әсер етті. Себебі, су тапшылығы, әсіресе су аз жылдары, бұл да трансшекаралық өзен бассейндерінің мемлекеттері арасындағы қайшылықтардың алғышарттарын жасайды. Осыған байланысты Шу өзенінің төменгі ағысында су пайдалану мен су таратуды ұтымды жоспарлауды қамтамасыз ету бойынша ұсынымдар мен іс-шараларды кешенді талдаумен, әзірлеумен заттай зерттеулер жүргізілді. Оның негізінде өзен бассейнінің ауылшаруашылық және табиғи кешендерін сақтаудың өзекті мәселелерін шешу ұсынылады.

THE CURRENT STATE OF AGRICULTURAL AND NATURAL COMPLEXES OF THE LOWER RIVER SHU

Tursun Ibrayev¹ Candidate of Technical Sciences, Marina Li^{1*} Candidate of Technical Sciences, Nurlan Bakbergenov², Talgat Imanaliyev², Nurlan Balgabayev² Doctor of Agricultural Sciences

KEY WORDS

water supply,
water management
infrastructure, field studies,
regulation,
management

About article:

Received: 03.06.2025 Revised: 26.09.2025 Accepted: 04.10.2025 Published: 08.10.2025

ABSTRACT

The complete regulation and intensive economic use of the runoff of the Shu River basin had a significant impact on the water regime of the lower ecosystem, its flora and fauna, social, household and economic conditions of the population. The reason is the shortage of water, especially in low-water years, which also creates prerequisites for contradictions between the states of the basins of transboundary rivers. In this regard, field studies have been conducted with a comprehensive analysis, development of recommendations and measures to ensure rational planning of water use and water distribution in the lower reaches of the Shu River. Based on the results of which the solution of urgent problems of conservation of agricultural and natural complexes of the river basin is proposed.

Примечание издателя: заявления, мнения и данные во всех публикациях принадлежат только автору (авторам), а не журналу "Гидрометеорология и экология" и/или редактору (редакторам).

¹ Institute of Geography and Water Security JSC, Almaty, Kazakhstan; kiwr-t@mail.ru, limarina76@mail.ru

² Kazakh Research Institute of Water management LLP, Taraz, Kazakhstan; bakbergenovnurlan@mail.ru, tonimontana_777@mail.ru, balgabayev@mail.kz

^{*}Corresponding author: Marina Li, limarina76@mail.ru