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 В работе рассматриваются методы автоматизированной классификации типов 

растительности и почвенного покрова на основе аэрокосмических данных высокого 

пространственного разрешения и геоинформационных технологий. Исследование 

выполнено с использованием космического снимка IKONOS и включает 

формирование обучающих и тестовых выборок для 12 классов растительности и 

почв, характерных для исследуемого региона. Проведён статистический анализ 

спектральных характеристик кластеров и оценка их репрезентативности и 

разделяемости. Показано, что неравномерное распределение обучающих примеров 

и перекрытие спектральных признаков отдельных классов снижают устойчивость 

классификации. Для повышения качества распознавания предложен подход, 

основанный на объединении спектрально близких классов и формировании 

альтернативных классификационных схем. Эффективность метода оценена с 

использованием статистического классификатора максимального правдоподобия и 

нейросетевого классификатора типа многослойного перцептрона. Полученные 

результаты подтверждают целесообразность оптимизации структуры 

классификационной схемы и состава обучающих выборок при решении задач 

аэрокосмического экологического мониторинга. 

 

 

 1. ВВЕДЕНИЕ 

Аэрокосмические методы мониторинга экологической обстановки в исследуемом 

регионе предполагают регулярное отслеживание изменений ключевых индикаторов, 

включая климатические параметры, распределение и деградацию растительных 

сообществ, а также химические характеристики почвенного покрова. При выявлении 

неблагоприятных изменений в природно-экологическом равновесии становится 

необходимым установить первопричины этих процессов – как с точки зрения их влияния 

на окружающую среду, так и с позиции пространственно-временного распределения. 

К традиционным сферам применения данных и методов дистанционного 

зондирования относятся, прежде всего, исследования природных ресурсов, мониторинг 

экологической обстановки и оценка антропогенного воздействия на окружающую среду, 

мониторинг для оценки состояния и роста культивируемой растительности, 

исследования, связанные с оценкой сейсмической и оползневой активностью в зоне 

прокладки магистральных нефте-газо проводов и т.д. Однако, в связи с появлением 

космических снимков высокого пространственного разрешения и высокоточных 

космических данных, изменились характер и акценты исследований задач в области  
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дистанционного зондирования. Кроме того, космоснимки метрового и субметрового 

разрешения стали применяться в таких областях, где они раньше не применялись или 

применялись в очень ограниченном виде, например, создание крупномасштабных 

электронных карт, поиск и обнаружение новых месторождений нефти и газа, 

прогнозирование урожайности сельскохозяйственных культур, экологический 

мониторинг геологической среды и т.д. [1…2]. 

Существенные изменения претерпели формы и подходы применения данных 

дистанционного зондирования в связи с разработкой и внедрением геоинформационных 

технологий, когда ГИС технологии и технологии дистанционного зондирования, 

фактически интегрировались. При этом подходе, абстрактная постановка основной 

задачи дистанционного зондирования – классификация, распознавание и 

дешифрирование обьектов – трансформируется в задачу исследования 

геораспределенных ресурсов, где из них выбираются распознаваемые объекты-

индикаторы, которые характеризуя состояние и особенности распространения  

объектов, могут адекватно отображать ситуацию. 

На начальной стадии анализа определяются координаты географических точек, в 

которых зафиксировано присутствие определённых видов растительности. Эти точки 

подвергаются геокодированию на основе спутниковых снимков, после чего выделяются 

участки территории, используемые в качестве обучающих и тестовых площадок для 

последующей работы алгоритма классификации. 

В таблице 1 и рисунке 1 представлены наименования отдельных видов 

растительности, характерных для рассматриваемого региона.  

 

Таблица 1 

Первоначальный набор классов и типов растительности и почв 
Номер класса Полное название растения 

Класс 1 Болотистая тростниковая растительность  

Класс 2 Болотистый кустарниковый тамариск (Tamarix) 

Класс 3 Прибрежная зона: полупустынная растительность 

Класс 4 Тростник ложный австралийский (Phragmaties australis) 

Класс 5 Солянка древовидная (Salsola ericoides) 

Класс 6 Солянка гористая (Salsola nodulosa) 

Класс 7 Солянка гористая (Salsola nodulosa) / Полынь Лерха (Artemesia lerchiana) 

Класс 8 Солянка гористая (Salsola Nodulosa) / Трава 

Класс 9 Полупустынная растительность - поташник каспийский, (Kalidium capsicum)  

Класс 10 Полупустынная растительность с доминированием Верблюжьей колючки (Alhagi pseudoalhagi)  

Класс 11 Голая почва 

Класс 12 Солянка гористая (Salsola nodulosa) / голая почва 

  

2. МАТЕРИАЛЫ И МЕТОДЫ 

Возможности, проектируемой ГИС для распознавания и классификации объектов 

позволяют не только автоматизировать процессы извлечения тестовых примеров из 

космического снимка в границах выделенных участков, но и использовать для этого 

различные алгоритмы. 

В первом случае используется алгоритм, который учитывает все пиксели и имеет 

незначительное перекрытие с выделенным участком. Во втором случае пиксели, 

пересекающиеся с границей участка, добавляются в набор только в том случае, если 

площадь перекрытия составляет больше половины площади одного пиксела (1 м2, в 

данном случае).  

В таблице 2 приведены количественные данные по разным классам растительного 

покрова, которые сформированы по космическому снимку исследуемого региона со 

спутника IKONOS. В таблицу добавлены вычисленные статистические характеристики, 

которые позволяют получить предварительные оценки по репрезентативности 

кластеров [3...5]. Другие комбинации объектов классов во втором случае. Поэтому 

количественно отличаются друг от друга. 

Для цитирования: 

Нематзаде Р., Рзаева Г,   
Рагимов Р., Самедов Ф.  
Метод формирования 

классов пространственно 

распределенных объектов 

с целью их 

классификации и 

распознавания на 

многоспектральных 

космических 

изображениях высокого 

разрешения // 

Гидрометеорология и 

экология, 120 (5), 2025, 

66-78. 
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Растительность болотного типа с 

преобладанием тростника 

Заболоченные участки с кустарниковыми 

формами тамариска (Tamarix) 

  

Горный тип солянки (Salsola nodulosa) Древовидная форма солянки (Salsola ericoides) 

  

Полупустынные сообщества с доминированием 

поташника каспийского (Kalidium capsicum) 

Полупустынные растительные сообщества, где 

преобладает Верблюжья колючка (Alhagi 

pseudoalhagi) 

  

Обнажённый почвенный покров Горная солянка (Salsola nodulosa) и открытый 

почвенный покров 

Рисунок 1. Некоторые виды растительности на исследуемой территории 

 

Из таблицы видно, что распределение примеров по классам неравномерно. Это 

связано, как с общим количеством примеров, извлекаемых из разных классов 

растительности и типов почв, представленных на сцене, так и с характером 

фрагментарности ареалов распространения различных типов растений. В первую очередь 

рассмотрим оценки по их общему количеству: 

 

𝑁𝑇 = 5𝑁𝑤 

𝑁𝑇 = 30𝑝𝑁0 
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𝑁𝑇 = 10𝑁𝑤 

𝑁𝑇 = 30𝑁1(𝑁1
+1) 

𝑁𝑤 = 𝑁𝐻(𝑁1 + 𝑁0) 

 

где, 𝑁1 – количество исходных нейронов в рассматриваемом случае соответствует числу 

спектральных каналов спутникового изображения; 𝑁0  – число выходных нейронов, 

соответствующих распознаваемым классам объектов; 𝑁𝐻  – количество нейронов, 

размещённых в скрытом уровне нейросети; 𝑁𝑤 – количество весовых коэффициентов; p 

– число нейронов или элементов, приходящихся на один класс, варьируется в диапазоне 

от 3 до 8. 

 

Таблица 2 

Размеры трейнинговых и тестовых образцов, определенные для выделенных 12 классов растительности и почвы. 
Идентификатор класса Количество 

примеров. 

Процедура 

1 

Количество  

примеров. 

Процедура 2 

Количество  

примеров. 

Процедура 

1 

Количество  

 примеров. 

Процедура 2 

Класс 1 1215 1113 1487 1368 

Класс 2 3181 2955 2087 1893 

Класс 3 97 67 63 33 

Класс 4 1891 1748 2055 1859 

Класс 5 234 186 279 176 

Класс 6 2393 1992 2867 2658 

Класс 7 690 564 478 388 

Класс 8 200 182 147 124 

Класс 9 52 35 49 30 

Класс 10 40 33 28 21 

Класс 11 474 242 553 287 

Класс 12 680 604 579 472 

Общее 11147 9721 10672 9309 

Математическое ожидание 928,9167 810,.0833 889,3333 775,75 

Среднеквадратическое отклонение 1036,354 950,3847 976,7583 917,4441 

 

 

Используя приведенные формулы, определены минимальное и максимальное 

значение необходимого количества нейронов классификатора: 

 

𝑁𝐻𝑚𝑖𝑛=57
 

𝑁𝐻𝑚𝑎𝑥=120
 

𝑁𝑤𝑚𝑖𝑛=8(4+12)=684
 

𝑁𝑤𝑚𝑎𝑥=120(8+12)=2400
 

На основе проанализированных данных выявлен значительный диапазон значений, 

что создает определённые сложности при установлении оптимального порогового 

значения для выбора необходимого объема обучающих примеров. Наиболее 

обоснованными считаются те оценки, в которых учитывается число весовых параметров 

модели. В целях повышения точности анализа, произведена оценка распределения 

обучающих примеров по категориям объектов с использованием интервалов, 

определённых на основе крайних значений – минимального и максимального количества 

доступных примеров. 

𝑪𝑰 = [𝑵𝒂𝒗 − 𝜶𝑵𝒎𝒔𝒅, 𝑵𝒂𝒗 + 𝜶𝑵𝒎𝒔𝒅] 

𝑵𝒂𝒗 = (𝑵𝑻/𝑵𝟎) 

 

где, 𝑁𝑎𝑣  - математическое ожидание, 𝑁𝑇  - общее количество примеров для обучения 

или тестирования; 𝑁0– количество классов, α – действительное число в интервале чисел 
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от одного до трех, 𝑁𝑚𝑠𝑑  – среднеквадратическое отклонение количества примеров по 

различным классам [6, 7]. 

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 

Рассмотрены статистические тесты на репрезентативность и разделяемость 

образцов (таблица 3).  

Из таблицы 3 следует, что некоторые кластеры или пересекаются или частично 

совпадают. В статье были рассмотрены различные комбинации гистограмм по 

различным вариантам комбинаций классифицируемых классов растительности. Для 

удобства проведения анализа распознаваемые классы были представлены в различных 

цветах. 

 

Таблица 3 

Статистические характеристики обучающих кластеров из «Основного набора» по четырем каналам. 

Название 

класса 

Красный канал Зеленый канал Синий канал Инфракрасный канал 

Минимум-

Максимум 

Среднее± 

Стан.откл 

Минимум-

Максимум 

Среднее± 

Стан.откл 

Минимум-

Максимум 

Среднее± 

Стан.откл 

Минимум-

Максимум 

Среднее± 

Стан.откл 

Класс 1 241–655 363,5 ± 40,5 398-725 497,9 ± 31,4 356-553 418,0 ± 20,0 466-1132 820,5±115,8 

Класс 2 264-738 497,8 ± 65,9 391-779 574,4 ± 53,2 354-605 468,6 ± 33,9 396-821 631,8 ± 52,6 

Класс 3 555-826 704,7 ± 60,4 648-878 772,5 ± 56,5 511-655 586,1 ± 36,7 481-759 649,4 ± 57,4 

Класс 4 216-697 380,7 ± 44,5 362-737 498,7± 38,0 329-553 424,7 ± 22,4 416-1394 806 ±289,4 

Класс 5 544–981 769,6 ± 95,3 653-1008 839,7 ± 77,2 493-724 619 ± 50,1 481-941 713,7±100,8 

Класс 6 395–1058 743,2± 89,7 523-1051 799,2 ± 75,9 409-760 609,3 ± 42,8 362-1000 698,1 ± 87,8 

Класс 7 554–930 729 ± 55,5 631-973 780,1 ± 50,7 493-691 583,7 – 30,1 534-896 700,4–50,2 

Класс 8 597–972 784,1 ± 63,5 694-994 835,8 ± 51,2 517-715 618,6 ± 33,2 541-928 738,3 ± 65,7 

Класс 9 639–761 689,0 ± 30,6 684-781 722,4 ± 24,4 528-598 553 ± 16,1 642-783 698 ± 30,2 

Класс 10 389–870 657,1±139,6 520-914 742,8 ± 115,7 424-672 561,4 ± 70,2 432-909 696,8±137,9 

Класс 11 760–1104 941,4 ± 64,6 841-1141 1001,8 ± 60,2 607-800 709,8 ± 38,0 673-1001 851,5 ± 61,1 

Класс 12 613–1047 854,0 ± 75,9 715-1078 912 ± 63,3 530-768 660,6 ± 40,7 523-975 780,0 ± 76,4 

 

В таблице 4 представлена цветовая характеристика класса по типам растительности 

и почвенных категорий.  

 

Таблица 4 

Исходная классификация типов растительности и почвенных категорий 
Номер класса Цветовая характеристика класса 

Класс 1  

Класс 2  

Класс 3  

Класс 4  

Класс 5  

Класс 6  

Класс 7  

Класс 8  

Класс 9  

Класс 10  

Класс 11  

Класс 12  

  

 

На рисунке 2 рассмотрены совместные гистограммы кластеров по отдельным 

спектральным каналам. 

Приведенный тест характеризует один из возможных вариантов модификации 

исходной классификационной схемы. Например, рассмотрен алгоритм 

классификационной схемы, в которой дополнительный набор состоит из 7-ми классов 

типов растительности [8]. 
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Красный Зеленый 

  

Голубой Инфракрасный 

  
Рисунок 2. Гистограммы кластеров 

 

Вычисление таблиц неточностей с использованием правил решения, базирующихся 

на статистических характеристиках. 

После проведения статистических тестов и оценок, мы из исходного 12-и 

кластерового набора создали два дополнительных набора, состоящих, соответственно, из 

7-и и 5-и кластеров (таблицы 5...6). Дополнительные наборы были составлены до начала 

процедуры обучения нейронного классификатора с целью определения границ 

возможных изменений классификационной схемы.   

Таблица 5.  

Таблица неточностей, полученных при применении статистического правила максимального правдоподобия для 

примеров из «Максимального» набора обучающих примеров - (12 классов). 

Класс 1 2 3 4 5 6 7 8 9 10 11 12 
Кол. 

прим 

Кол. прав. 

откл. 

прим. 

1 88,89 0,00 0,00 9,57 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1261 1080 

2 0,66 82,62 0,00 9,94 0,00 0,00 0,87 0,00 0,00 0,00 0,00 0,00 2830 2628 

3 0,00 7,48 79,38 0,05 8,12 2,05 5,65 1,50 0,00 0,00 0,00 0,29 428 77 

4 10,45 5,16 0,00 80,43 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1812 1521 

5 0,00 0,03 0,00 0,00 83,33 0,82 6,96 4,00 0,00 0,00 0,00 1,32 520 195 

6 0,00 0,00 1,03 0,00 0,43 82,45 0,00 0,00 0,00 0,00 0,00 0,00 1975 1973 

7 0,00 3,87 14,43 0,00 2,14 2,13 64,06 13,50 0,00 0,00 0,00 0,00 662 442 

8 0,00 0,00 4,12 0,00 4,70 1,76 17,39 81,00 0,00 0,00 0,00 0,00 339 162 

9 0,00 0,22 0,00 0,00 0,00 0,00 0,00 0,00 0,00 98,08 0,00 0,00 58 51 

10 0,00 0,63 1,03 0,00 0,00 0,00 2,90 0,00 0,00 1,92 100,0 0,00 82 40 

11 0,00 0,00 0,00 0,00 0,00 0,00 0,43 0,00 92,62 0,00 0,00 5,74 481 439 

12 0,00 0,00 0,00 0,00 1,28 0,79 1,74 0,00 7,38 0,00 0,00 92,65 699 630 

Итого 1215 3181 97 1891 234 2393 690 200 474 52 40 680 11147 11147 
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ОУК = 100%*(КПКП/ОКП) = 100%*(9238/11147) = 82.87% 

 

Примечание: ОУК – Оценка Усредненной Корректности; КПКП - Количество Правильно 

Классифицируемых Примеров; ОКП - Общее Количество Примеров. 

 

Полученные результаты позволяют прогнозировать возможность качественного 

обучения нейронного классификатора по данной классификационной схеме, на примерах 

из данного набора. 

 

Таблица 6. 

Таблица неточностей, полученных в ходе обучения статистического классификатора максимального правдоподобия 

с помощью тестовых образцов из «Максимального набора» - (12 классов). 

Класс 1 2 3 4 5 6 7 8 9 10 11 12 Кол. прим. 

Кол. 

прав. 

откл. 

прим. 

1 90,32 1,25 0,00 11,92 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1614 1343 

2 5,78 90,42 0,00 10,36 0,00 0,00 0,21 0,00 0,00 0,00 0,00 0,00 2187 1887 

3 0,00 0,00 73,02 0,00 8,24 1,88 2,09 4,76 0,00 0,00 0,00 0,35 142 46 

4 0,90 4,55 0,00 7,71 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 1750 1597 

5 0,00 0,00 15,87 0,00 74,19 5,16 3,35 0,68 0,00 0,00 0,00 5,70 415 207 

6 0,00 0,14 0,00 0,00 2,51 65,47 0,63 3,40 0,00 0,00 0,00 0,35 1897 1877 

7 0,00 3,59 11,11 0,00 0,72 4,12 83,05 1,36 0,00 0,00 0,00 0,00 594 397 

8 0,00 0,00 0,00 0,00 4,30 18,63 7,74 89,80 0,00 0,00 0,00 0,00 715 132 

9 0,00 0,00 0,00 0,00 0,00 0,00 0,42 0,00 95,66 0,00 0,00 7,25 54 49 

10 0,00 0,05 0,00 0,00 0,00 0,00 0,84 0,00 0,00 100,00 0,00 0,00 28 28 

11 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 100,00 0,00 573 529 

12 0,00 0,00 0,00 0,00 10,04 4,74 1,67 0,00 4,34 0,00  0,00 86.36 696 500 

Итого 1487 2087 63 2055 279 2867 478 147 553 49 28 579 10672 10665 8592 

 

Чтобы минимизировать риски, связанные с неопределенностью процедуры 

обучения, необходимо сформировать репрезентативные множества обучающих 

примеров. Перед началом процесса обучения нейронных классификаторов,   наборы  

множеств обучающих примеров тестируются  на основе вычисления таблиц 

неточностей с использованием правил решения, базирующихся на статистических 

характеристиках. В работе составлены таблицы неточностей вычисленные по правилу 

максимального правдоподобия на кластерах из максимального 12-ти классового набора 

примеров. Каждый набор имеет две равновидности: наборы обучающих примеров и 

примеры для тестирования называемые трейнинговыми и тестовыми  кластерами. В 

полном варианте статьи приводяться таблицы по двум разновидностям наборов, а также 

таблица неточностей классификации примеров из тестового набора.  

Предварительный анализ таблиц позволяет сделать следующие выводы: 

1. Результаты тестирования, при использовании того же множества примеров, что и 

для обучения классификатора, по обеим разновидностям кластеров, составляют порядка 

80 %; 

2. Результаты тестирования при использовании для тестирования тестовых 

кластеров, а для обучения классификатора трейнинговых кластеров, составляет порядка 

70 %; 



Нематзаде и др. Гидрометеорология и экология №5 (120), 2025 

73 

3. Практическое совмещение результатов тестирования классификаторов выявило 

несовпадение результатов по отдельным классам, что указывает на наличие проблем 

процесса обучения. 

Применяемый алгоритм формирует новые кластеры путём выборки примеров из 

одного или нескольких ранее созданных кластеров, основанных на исходной 

классификационной структуре. Основная сложность на начальном этапе формирования 

обучающей выборки заключается в неравномерном распределении примеров между 

кластерами. Теоретически возможно перераспределить примеры так, чтобы они были 

более равномерно распределены между классами. 

В данной работе предложена методика, предполагающая изменение постановки 

задачи, связанной с определением структуры классификационной схемы. Как правило, 

этот подход демонстрирует более высокую эффективность при решении задач 

управления природными ресурсами, а также в задачах контроля и аэрокосмического 

мониторинга. При его применении приоритет отдаётся выбору распознаваемых 

индикаторов, необходимых для оценки ситуации. По результатам первичных тестов был 

предложен вариант объединения классов с близкими характеристиками и формирования 

новых классификационных схем. Это позволяет повысить качество обучения 

классификатора и улучшить результаты распознавания объектов.  

Предлагаемый подход, объединяющий методы современных информационных 

технологий и модели данных, обеспечивает возможность подбора оптимального набора 

индикаторов и эффективного решения поставленной задачи. 

После проведения статистических тестов и оценок из исходного 12-кластерного 

набора были сформированы два дополнительных набора, содержащие соответственно 7 

и 5 кластеров. До начала обучения нейронного классификатора, с целью определения 

границ возможных изменений классификационной схемы, были составлены 

дополнительные наборы данных. Для минимизации рисков, связанных с 

неопределённостью процедуры обучения, необходимо формировать репрезентативные 

множества обучающих примеров. Перед началом обучения нейронных классификаторов 

эти множества проходят тестирование на основе вычисления таблиц неточностей с 

использованием правил решения, основанных на статистических характеристиках 

[9...11]. 

В данной работе таблицы неточностей рассчитаны по правилу максимального 

правдоподобия для кластеров исходного 12-классового набора примеров. Каждый набор 

представлен в двух вариантах: обучающие примеры (тренинговые кластеры) и примеры 

для тестирования (тестовые кластеры). В полном тексте статьи приведены таблицы для 

обеих разновидностей наборов, а также таблица неточностей классификации примеров 

из тестового набора. [12...13]. 

Процесс активного обучения классификатора Многослойный Перцептрон зависит 

от разных параметров, значениями которых, в зависимости от условий эксперимента, 

можно в разной степени варьировать. 

Основными параметрами классификатора являются:  

- Размер трейнинговых областей; 

- Количество итераций; 

- Использование разного количества исходных нейронов; 

- Параметры быстроты обучения и моментум; 

- Количество скрытых слоев и количество в них нейронов; 

- Вид и тип передаточной функции. 

Рассмотрим набор эвристических правил, используемых для уменьшения 

времениобучения и, в целом, для  улучшения качества и производительности 

классификатора: 

- при определении количества примеров небходимо иметь  больше примеров для 

трейнинговых образцов, чем весов. Можно предположить, что качество МСП, при 
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использовании тестового набора, будет ограничено отношением N>W/e, где N – 

количество итераций обучения, W – количество весов, Е – ошибка в качествеобучение 

классификатора минимизируется,  пока среднеквадратическая ошибка не будет меньше, 

чем e/2; 

- трейнинговые данные необходимо нормализовать; 

- использовать функцию гиперболического тангенса вместо других сигмоидов; 

- нормализовать ожидаемый сигнал,выбрав его значение в интервале (0, 1); 

- установить соответствующий размер шага, например, для одного скрытого слоя 

Многослойный Персептрон (МСП), установить размер шага на 0,05 выше в синапсе 

между входным и скрытым слоями и 0,01 в синапсе между скрытым и выходным слоями; 

- инициализировать сетевые веса в линейной части нелинейности. 

В результате проведенных эспериментов было составлено оптимальное по разным 

наборам множество значений для всех перечисленных параметров классификатора МСП, 

кроме числа итераций, значения которых варьировалось с целью достижения наилучшей 

производительности. При этом состав трейнинговых образцов не изменялся, учитывая, 

что размеры образцов, которые использовались для обучения статистических 

классификаторов, превосходили  оптимальные значения, вычисленные согласно 

существующим правилам. [14…15]. 

Таким образом, во всех экспериментах был использован следующий набор 

постоянных значений параметров, для обучения классификатора МСП: 

1. Исходные веса, сгенерированные программой, это случайные значения в 

интервале [0; 0,05]; 

2. Количество исходных нейронов – 4, равное количеству спектральных каналов; 

3. Количество скрытых слоев – 1; 

4. Количество нейронов в скрытом слое – 25 для «основного набора» и 50 - для 

«расширенного набора».Увеличение количества примеров не приводит к увеличению 

количества весов, варьирование которыми позволяет обучать классификатор, 

следовательно, для того, чтобы сохранить порядок соотношения кол-во примеров/кол-во 

весов мы увеличиваем количество нейронов, а значит, и количество весов;  

5. Параметры быстроты обучения или размер шага между входным и скрытым 

слоями, η – 0,5;  

6. Момент между входным и скрытым слоями, α – 0,7. Параметры быстроты 

обучения или размер шага между скрытым входным и выходным слоями, η – 0,25;  

7. Момент между входным и скрытым слоем, α – 0,7;  

8. Вид и тип передаточной функции - гиперболический тангенс; 

9. Порог ошибки, erthresh – 0,01; 

10. Качество классификатора определяется, начиная с 2500-ой итерации с проверкой 

через каждые 2500 итераций, вплоть до достижения порога установленной ошибки - 

(0,001). При этом использовались следующие параметры качества:  

- MSE – среднеквадратическая ошибка. При достижении двойной кратности 

порога ошибки ( установленное  значение ошибки- 0,001), обучение останавливалось; 

- r - коэффициент корреляции между изменениями направлений реальных 

выходов сети, к ожидаемым. Чем ближе эта величина к 1, тем лучше классификатор 

обученя; 

- %err – процент погрешности, который определяет погрешность на единицу 

элемента, по которой вычисляются ошибки. Чем ближе значение этой величины к 

0,1...0,2, тем выше качество обучения классификатора. 

4. ЗАКЛЮЧЕНИЕ 

В настоящей работе рассмотрены возможности применения аэрокосмических 

данных высокого пространственного разрешения и геоинформационных технологий для 

решения задач распознавания и классификации типов растительности и почвенного 

покрова в условиях сложной природной среды. На основе космического снимка IKONOS 
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и наземной информации сформирован исходный набор из 12 классов растительности и 

почв, отражающих основные типы природных сообществ исследуемого региона. 

Проведённый анализ показал, что ключевым фактором, влияющим на качество 

автоматической классификации, является репрезентативность обучающих выборок и их 

распределение между классами. Установлено, что при неравномерном распределении 

примеров по классам существенно возрастает вероятность перекрытия спектральных 

характеристик и снижается разделяемость кластеров, что негативно отражается на 

результатах обучения как статистических, так и нейросетевых классификаторов. 

На этапе предварительного анализа выполнена оценка статистических 

характеристик кластеров по всем спектральным каналам, что позволило выявить 

частичное совпадение и пересечение спектральных признаков отдельных классов. 

Результаты тестирования статистического классификатора максимального 

правдоподобия показали, что при использовании одних и тех же выборок для обучения и 

тестирования общая точность классификации составляет порядка 80–83 %, тогда как при 

раздельном использовании трейнинговых и тестовых наборов точность снижается до 

уровня около 70 %. Это указывает на наличие переобучения и подтверждает 

необходимость оптимизации структуры классификационной схемы и состава обучающих 

данных. 

В работе предложен методический подход, основанный на изменении постановки 

задачи классификации за счёт объединения спектрально близких классов и 

формирования альтернативных классификационных схем. В результате из исходного 12-

классового набора сформированы дополнительные наборы, содержащие 7 и 5 

укрупнённых классов, что позволило снизить влияние неравномерности обучающих 

выборок и повысить устойчивость классификаторов. Проведённые статистические тесты 

показали целесообразность такого подхода на этапе предварительной оценки данных до 

обучения нейронных моделей. 

В целом результаты исследования подтверждают, что эффективное применение 

нейросетевых и статистических методов классификации в задачах аэрокосмического 

мониторинга требует не только выбора алгоритма, но и обоснованного формирования 

классификационной схемы и системы индикаторов. Предлагаемый подход, основанный 

на интеграции данных дистанционного зондирования, ГИС-технологий и методов 

интеллектуального анализа данных, может быть использован при решении широкого 

круга задач экологического мониторинга, управления природными ресурсами и оценки 

состояния природных территорий. 

Перспективы дальнейших исследований связаны с расширением временных рядов 

космических данных, использованием дополнительных спектральных и текстурных 

признаков, а также внедрением методов активного и ансамблевого обучения для 

повышения устойчивости и точности классификации в условиях высокой природной 

неоднородности. 
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 Жұмыста кеңістіктік ажыратымдылығы жоғары аэроғарыштық деректер мен 

геоақпараттық технологиялар негізінде өсімдік жамылғысы мен жер 

жамылғысының түрлерін автоматтандырылған жіктеу әдістері қарастырылады. 

Зерттеу IKONOS ғарыштық суретін қолдану арқылы жүзеге асырылады және 

зерттелетін аймаққа тән өсімдіктер мен Топырақтардың 12 класы үшін оқыту және 

сынақ үлгілерін қалыптастыруды қамтиды. Кластерлердің спектрлік 

сипаттамаларына статистикалық талдау және олардың өкілдігі мен бөлінуін бағалау 

жүргізілді. Оқыту мысалдарының біркелкі бөлінбеуі және жеке сыныптардың 

спектрлік белгілерінің қабаттасуы классификацияның тұрақтылығын төмендететіні 

көрсетілген. Тану сапасын арттыру үшін спектрлік жақын сыныптарды біріктіруге 

және балама жіктеу схемаларын қалыптастыруға негізделген тәсіл ұсынылады. 

Әдістің тиімділігі максималды ықтималдық статистикалық жіктеуіші мен көп 

қабатты перцептрон типіндегі нейрондық желілік жіктеуіштің көмегімен 

бағаланады. Алынған нәтижелер аэроғарыштық экологиялық мониторинг 

міндеттерін шешу кезінде жіктеу схемасының құрылымын және оқыту үлгілерінің 

құрамын оңтайландырудың орындылығын растайды. 
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 The paper discusses methods for automated classification of vegetation types and soil 

cover based on high-resolution aerospace data and geoinformation technologies. The study 

was conducted using IKONOS satellite imagery and includes the formation of training and 

test samples for 12 classes of vegetation and soils characteristic of the region under study. 

A statistical analysis of the spectral characteristics of clusters and an assessment of their 

representativeness and separability were performed. It was shown that the uneven 

distribution of training examples and the overlap of spectral features of individual classes 

reduce the stability of classification. To improve recognition quality, an approach based 

on combining spectrally similar classes and forming alternative classification schemes was 
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proposed. The effectiveness of the method is evaluated using a maximum likelihood 

statistical classifier and a multilayer perceptron neural network classifier. The results 

confirm the feasibility of optimizing the structure of the classification scheme and the 

composition of training samples when solving aerospace environmental monitoring 

problems. 
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