УДК 631.67:574.53

Канд. техн. наук С.Д. Магай *

ЭФФЕКТИВНОСТЬ И ТЕХНОЛОГИИ ОРОШЕНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР МИНЕРАЛИЗОВАННЫМИ ВОДАМИ НА ЮГЕ КАЗАХСТАНА

ТЕХНОЛОГИЯ, ОРОШЕНИЕ, ПОЛИВНАЯ НОРМА, МИНЕРАЛИЗАЦИЯ, ПРЕДПОЛИВНАЯ ВЛАЖНОСТЬ, ЭФФЕКТИВНОСТЬ

Эффективность технологии орошения сельскохозяйственных культур минерализованными водами предопределяется параметрами: предполивной влажностью почв и поливными нормами. В зависимости от степени минерализации оросительной и грунтовой воды сочетания этих параметров в различные фазы развития растений меняются.

Проблема развития орошения в южном Казахстане, где расположены основные площади орошаемых земель, лимитируется дефицитом водных ресурсов. Водообеспеченность действующих ирригационных систем колеблется в пределах 75...95 %, а в маловодные годы опускается до 60...70 %. В то же время значительные объемы минерализованных возвратных вод, формирующиеся на орошаемых массивах, загрязняют водные источники и ухудшают экологическую обстановку на прилегающих территориях.

Для защиты водных источников от загрязнения и улучшения экологической обстановки в зонах орошения необходимо до минимума сократить поступление в них отработанных вод путем их максимального использования на орошение в местах непосредственного формирования. Однако, обладая высокой минерализацией, возвратные воды не могут быть утилизированы на орошение сельскохозяйственных культур в чистом виде. Использование её на поливы возможно при смешивании с оросительной водой в различных пропорциях.

Рекомендуя утилизировать минерализованные воды на орошение сельскохозяйственных культур, необходимо знать, как и в чем проявляется

^{*} Научно-исследовательский институт водного хозяйства, г. Тараз. 132

воздействие солей на растения. Общеизвестно и установлено, что продуктивность орошаемых культур практически всегда зависит от содержания (концентрации) солей в почве и поливной воде. При этом на рост и развитие растений вредное действие ионов солей проявляется по-разному и зависит не только от степени и химизма засоления почв, но и от степени её солонцеватости, уровня залегания и минерализации грунтовых вод (ГВ) и др. На различия в солеустойчивости влияют и свойства самих растений [1-4].

При использовании минерализованных вод на орошение проблема солеустойчивости растений встает более остро в связи с появлением ещё одного фактора, непосредственно влияющего на концентрацию почвенного раствора. Солеустойчивость — это не признак, а процесс. Она определяется при росте и развитии растений и зависит от сочетания целого ряда факторов внешней среды, а не каким-то одним признаком и состоянием растений. Приспособление растений к засолению почвы проходит в процессе их индивидуального развития, однако быстрота и глубина этого процесса неразрывно связана с эволюцией данного вида. При многолетнем выращивании какой-либо культуры на засоленных землях, благодаря этому процессу, солеустойчивость её постоянно повышается. Поэтому для посева на засоленных почвах рационально использовать семена, полученные в местных или аналогичных условиях.

Повышенная концентрация ионов в почве оказывает на растения преимущественно токсическое действие. Токсичность, в свою очередь, зависит от вида иона. Теоретические предпосылки дают основание полагать, что природа молекулярного механизма приспособления растительной клетки к высокой концентрации ионов зависит от типа засоления [4, 5].

Следовательно, принципы разработки мероприятий, повышающих солеустойчивость и урожайность сельскохозяйственных культур, должны учитывать природу засоления и быть специфичны. С другой стороны, установлено, что различные сорта одной культуры обладают разной степенью солеустойчивости.

Однако, следует помнить, что значительные расхождения между показателями солеустойчивости объясняются зависимостью её от степени и типа засоленности почвы, вида возделываемых культур, фазы их развития и целого ряда других факторов. Растения в присутствии высоких концентраций солей испытывает многофакторное воздействие и дать какие-то конкретные пределы солеустойчивости растений не представляется возможным. Одни и те же культуры в различных орошаемых зонах и даже на одной опытной станции, но в различные годы, обнаруживают различную сравнительную солевыносливость. Об этом хорошо сказал академик А.А. Шахов: «В пределах одного и того же вида отдельные разновидности могут сильно различаться по солевыносливости, солеустойчивости, а также и по урожайности. Значительными бывают различия в солевыносливости (или солеустойчивости) отдельных сортов в пределах одной и той же разновидности. Поэтому не представляется возможным разработать и дать какие-либо постоянно действующие, пригодные для всех условий нормы солевыносливости не только вообще сельскохозяйственных растений, но даже отдельных культур». В каждом конкретном случае необходимо проводить специальные исследования и уточнять их по мере необходимости [6, 8].

В условиях хлоридно-сульфатного и сульфатного типов засоления, к каковым относится большая часть орошаемых земель Южного Казахстана, наиболее солеустойчивыми являются свекла и подсолнечник. Из зерновых – джугара, просо, ячмень, пшеница и кукуруза. Уступая свекле и подсолнечнику, относительно солеустойчивой культурой является хлопчатник.

Использование минерализованных вод на орошение сельскохозяйственных культур должно осуществляться научно-обосновано, на основе проведения натурных исследований, с определением мелиоративных показателей и урожайности возделываемых культур, учитывая опыт применения таких вод в других регионах. Она должна включать технологии орошения сельскохозяйственных культур, адаптированные к применяемым условиям, экономические и мелиоративные показатели их применения [2].

Адаптация осуществлялась на опытно-производственном участке, который согласно методике типизации орошаемых объектов Шабанова В.В. и Рудаченко Е.П., принятой в мелиоративной практике, на 72 % характеризует орошаемые земли Казахстанской части Голодностепского массива [7].

Технология орошения сельскохозяйственных культур оросительной и дренажной водой в соотношении 4:1.

Изучение возможности использования минерализованных дренажных вод путем разбавления их оросительной (речной) является весьма актуальным вопросом в любых речных бассейнах, особенно в среднем и нижнем течении реки Сырдарьи, где расположены большие площади орошаемых земель и формируются значительные объемы возвратных минерализованных вод.

В Махтааральском районе с развитым хлопкосеянием формируются большие объемы дренажных вод, но прямое использование их на оро-

шение, как практикуют фермеры в маловодные годы, не дает желаемые результаты, а только позволяет сохранить хоть какой-то урожай.

Долевое соотношение оросительной и минерализованной воды при их смешанном использовании на орошение наиболее приемлемо для фермеров из-за отсутствия у них приборов определения содержания солей в поливной воде (кондуктометров). В нашем случае смешанная в соотношении 4:1 оросительная и дренажно-сбросная вода соответствует минерализации 2,0...2,5 г/дм³. Показатели, характеризующие качественный состав солей в воде, варьируют в диапазоне: SAR – от 4,6 до 6,6; $Cl^-/SO_4^{--} - 0,5...0,6$.

Поливы минерализованной водой лучше начинать с фазы бутонизации. Однако в острозасушливые годы можно применять и в начальные фазы развития растений. При этом, поливные нормы должны учитывать мелиоративное благополучие и приемлемую экологическую обстановку на орошаемых землях, т.е. быть экологически-безопасными. Размеры последних устанавливаются дифференцированно для конкретных объектов с учетом степени засоления почвогрунтов, грунтовых и поливных вод (табл. 1).

Таблица 1 Экологически-безопасная поливная норма, ${\rm M}^3/{\rm ra}$

Минерализация ГВ,	Содержание солей в почве, %			
г/дм ³	0,30,4	0,50,7		
< 3,0	950	1050		
35	1000	1150		
57	1100	1300		

Параметры режима орошения сельскохозяйственных культур должны быть согласованы с фазами развития растений, наиболее чувствительными к недостатку влаги. Поливы, выполненные в сроки, не согласованные с ходом развития растений, приводят к снижению урожая и ухудшению его качества.

Главным показателем, определяющим сроки и нормы проведения поливов, является влажность, а точнее порог предполивной влажности расчетного слоя почвы, который в зависимости от фазы развития сельско-хозяйственной культуры имеет различные значения (табл. 2).

Для орошаемых земель Казахстанской части Голодной степи (где на около 70 % площади почвы незасоленные и слабозасоленные, а уровень грунтовых вод в вегетационный период залегает на глубине 1,2...2,5 м)

режим орошения сельскохозяйственных культур, с учетом экологически-безопасных норм, представлен в табл. 3.

Таблица 2 Порог предполивной влажности почв

Фаза развития	Расчетный слой, м	Порог предполивной влажности, % от НВ		
Хлопчатн	ик			
Всходы – бутонизация	0,50,6	6065		
Бутонизация – плодообразование	0,60,9	6570		
Плодообразование – техническая спелость	0,91,0	6065		
Кукуруза				
67 лист – цветение	0,60,9	6570		
Цветение – молочно-восковая спелость	0,91,0	6570		

Таблица 3 Режим орошения сельскохозяйственных культур

Минерализация	Дата первого	Количество	Hорма, M^3/Γ а		
ΓB , $\Gamma/д M^3$	полива	поливов	поливная	оросительная	
	Хлопчатник				
< 3	11.0630.06	23	9501050	21003150	
35	8.0627.06	34	10001150	31504600	
57	1.0620.06	45	11001300	46006500	
Кукуруза на зерно					
< 3	8.0627.06	23	9501050	21003150	
35	5.0624.06	34	10001150	31504600	
57	28.0517.06	34	11001300	33005200	

Технология орошения сельскохозяйственных культур оросительной и дренажной водой в соотношении 2:1

Смешанная в соотношении 2:1 оросительная и дренажная вода соответствует минерализации 2,5...3,5 г/дм 3 . Показатели, характеризующие качественный состав солей в воде, составляют: SAR - 6,6...8,1; Cl^-/SO_4^{--} - 0,6...0,8.

Поливы минерализованной водой с повышенным содержанием солей рекомендуется начинать с фазы бутонизации. В зависимости от минерализации грунтовых вод и степени засоления почв, экологически безопасные поливные нормы, учитывающие минимально необходимый объем инфильтрационных вод, обеспечивающий солевую вентиляцию в зоне аэрации, изменяются от 1000 до 1400 м 3 /га (табл. 4).

Для снижения негативного влияния более минерализованной воды на развитие возделываемой культуры порог предполивной влажности почв следует увеличить и принять в следующих размерах (табл. 5).

Таблица 4 Экологически-безопасная поливная норма, ${\rm M}^3/{\rm ra}$

Минерализация ГВ,	Содержание солей в почве, %		
$\Gamma/дм^3$	0,30,4	0,50,7	
< 3,0	1000	1100	
35	1050	1200	
57	1200	1400	

Таблица 5 Порог предполивной влажности почв

Фаза развития	Расчетный слой, м	Порог предполивной влажности, % от НВ		
Хлопчатник				
Всходы – бутонизация	0,50,6	6570		
Бутонизация – плодообразование	0,60,9	7075		
Плодообразование – техническая спелость	0,91,0	6570		
Кукуруза				
67 лист – цветение	0,60,9	7075		
Цветение – молочно-восковая спелость	0,91,0	7075		

Соответственно режим орошения сельскохозяйственных культур с учетом экологически-безопасных норм будет выглядеть следующим образом (табл. 6).

Таблица 6 Режим орошения сельскохозяйственных культур

Минерализация ГВ,	Дата первого	Количество	Норма, м ³ /га		
г/дм ³	полива	поливов	поливная	оросительная	
Хлопчатник					
< 3	11.0630.06	34	10001100	32004300	
35	8.0627.06	45	10501200	44006000	
57	1.0620.06	56	12001400	60007800	
Кукуруза на зерно					
< 3	11.0630.06	34	10001100	31004200	
35	8.0627.06	34	10501200	33004800	
57	28.0517.06	45	12001400	48006400	

Параметры режима орошения должны также соответствовать темпам водопотребления возделываемой культуры в различные периоды раз-

вития, учитывать увлажненность года, мощность покровных отложений, водно-физические свойства почвогрунтов, уровень залегания грунтовых вод от дневной поверхности в течение вегетационного периода.

Мелиоративная и экономическая эффективность

Мелиоративные и экономические показатели (средние за 3 года) эффективности использования минерализованных вод приведены на примере орошения хлопчатника на опытно-производственном участке в крестьянском хозяйстве в Махтааральском районе Южно-Казахстанской области (табл. 7).

Таблица 7 Эффективность использования минерализованных вод

Показатель	Соотношение оросительной и минерализованной воды		
	1:0	4:1	2:1
Засоление корнеобитаемого слоя, %			
до промывки почв	0,780,89		
перед посевом	0,54	0,57	0,59
после уборки	0,66	0,76	0,83
Относительная урожайность, в долях от 1	1,00	0,95	0,88
Относительная прибыль, в долях от 1	1,00	0,91	0,79

Анализ табл. 7 показывает, что проведение поливов смешанной оросительной и дренажной водой в соотношении 4:1 с минерализацией 2,0...2,5 г/дм³ снизило урожайность хлопчатника на 3...7 %; в соотношении 2:1 (3,0...3,5 г/ дм³) -11...13 % по сравнению с поливом оросительной водой (1,0...1,2 г/ дм³). Это, естественно, отразилось на полученной прибыли. Следует отметить, что существенное влияние на размеры прибыли оказывали закупочные цены, которые не были соизмеримы с затратами на возделывание хлопчатника.

Проведение поливов минерализованной водой позволяет получать приемлемые урожаи хлопчатника и не допускать реставрацию засоления корнеобитаемого слоя выше исходного уровня.

Эффективность утилизации минерализованных вод путем использования их на орошение многогранна. Её следует рассматривать как с экономической точки зрения, так и с экологической и социальной.

СПИСОК ЛИТЕРАТУРЫ

1 Базилевич Н.И., Панкова Е.И. Опыт классификации почв по засолению // Почвоведение. -1968. -№11. - С. 3-15.

- 2 Вышпольский Ф.Ф., Магай С.Д., Раймбаев К.Т. Рекомендации по управлению мелиоративными режимами на орошаемых землях. Тараз: 1998. 38 с.
- 3 Зимовец Б.А., Хитров Н.Б. Экологическая оценка качества оросительной воды // Гидротехника и мелиорация. 1993. №5. С. 30-33.
- 4 Стеблер И. Требование к качеству оросительных вод // Водное хозяйство. Киев. 1965. №1. 163 с.
- 5 Строганов Б.П., Кабанов В.В., Шевякова Н.И. Использование минерализованных вод на орошение. / В сб. науч. трудов ВАСХНИЛ «Современное состояние проблемы солеустойчивости растений». М.: Колос, 1973. С. 47-66.
- 6 Тулеубаев Б.А., Виноградов Е.П. Дополнительные источники орошения сельскохозяйственных культур / Аналитический обзор. Алма-Ата: 1987. — 40 с.
- 7 Шабанов В.В., Рудаченко Е.П. Типизация объектов сельскохозяйственных мелиораций // Вестник сельскохозяйственной науки. 1971. № 1. С. 83-86.
- 8 Шахов А.А. Солеустойчивость растений. М.: Лес. пром-сть, 1956. 552 с.

Поступила 30.05.2013

Техн. ғылымд. канд. С.Д. Магай

ҚАЗАҚСТАННЫҢ ОҢТҮСТІГІНДЕГІ АУЫЛ ШАРУАШЫЛЫҒЫ ДАҚЫЛДАРЫН МИНЕРАЛДАНҒАН СУЛАРМЕН СУҒАРУДЫҢ ТИІМДІЛІГІ ЖӘНЕ ТЕХНОЛОГИЯСЫ

Ауыл шаруышылығы дақылдарын минералданған сулармен суғару технологиясының тиімділігі алдын ала келесі параметрлермен — топырақтың суғару алдындағы ылғалдылығымен және суғару мөлшерлерімен анықталады. Суғару суы мен ыза суының минералдылығының дәрежесіне байланысты осы параметрлерінің өзара үйлесуі өсімдіктің әртүрлі даму фазасында өзгереді.