AN OVERVIEW OF INTERNATIONAL CALIBRATION SYSTEMS AND THEIR ROLE IN ENVIRONMENTAL RESEARCH

Authors

  • N. Kemerbayev LLP "GEOID"
  • G. Mussina LLP "GEOID"
  • M. Shkiyeva LLP "GEOID"
  • K. Samarkhanov LLP "GEOID", Astana International Scientific Complex
  • А. Batalova LLP "GEOID"
  • А. Rakhimzhanov LLP "GEOID"

DOI:

https://doi.org/10.54668/2789-6323-2024-115-4-152-166

Keywords:

gravimetry, calibration basis, Scintrex gravimeter, environment

Abstract

The article provides examples of the use of gravimetric observations to monitor the environmental situation of mineral deposits. Such measurements are usually made by a group of devices. A high level of accuracy requires the consistency of all instruments used, which is achieved by calibration. An overview of gravimetric calibration systems, which play a key role in accurate and reliable measurement of gravity acceleration on the Earth’s surface, is given. Calibration bases are necessary to ensure metrological control and improve measurement accuracy in such fields of Earth sciences as geodesy, geophysics, geology and other related disciplines. This article discusses different gauge systems used in different countries, including Russia, Poland, Croatia, Switzerland, Canada, Austria, Germany, China, Estonia, Finland, Iran, Brazil, and also in the Republic of Kazakhstan.

References

Трофимов Д.М. Современные микроамплитудные тектонические движения, дистанционные методы их изучения и значение для нефтегазовой геологии // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2016. – №4. – С. 6-11.

Вартанян Г.С. Система геодинамического мониторинга крупных ареалов для обеспечения безопасности геолого разведочных и эксплуатационных работ на нефть и газ / Г. С. Вартанян // Геофизические процессы и биосфера. – 2010. – Т. 9, №2. – С. 5-22.

Appriou, D., Bonneville, A., Zhou, Q. & Gasperikova, E. (2020) Time-lapse gravity monitoring of CO2 migration based on numerical modeling of a faulted storage complex. International Journal of Greenhouse Gas Control 95, 102956.

Darwish, S. M., Saibi, H., Gabr, A. & Mohamed, M. M. (2021) Microgravity monitoring of groundwater dynamics in a shallow aquifer in Al-Ain (Abu Dhabi Emirate, United Arab Emirates): an opportunity for understanding aquifer hydrodynamics in arid regions. Environ Earth Sci 80, 559.

Bychkov, S., Dolgal, A., & Simanov, A. (2021). Interpretation of Gravity Monitoring Data on Geotechnical Impact on the Geological Environment. Pure and Applied Geophysics, 178(1). https://doi.org/10.1007/s00024-020-02640-8.

Greco, F. &Currenti, Gilda & D’Agostino, G. & Negro, C. & Di Stefano, Andrea &Germak, Alessandro. (2013). Six Years of Repeated Absolute Gravity Measurements at Etna Volcano (Italy).

Mulugeta, B. D., Fujimitsu, Y., Nishijima, J., & Saibi, H. (2021). Interpretation of gravity data to delineate the subsurface structures and reservoir geometry of the Aluto Langano geothermal field, Ethiopia. Geothermics, 94. https://doi.org/10.1016/j.geothermics.2021.102093.

Urs, M., Philippe, R., Alessandro, G., & Herbert, W. (2014). CCM-IAG Strategy for Metrology in Absolute Gravimetry: Role of CCM and IAG CCM-IAG Strategy for Metrology in Absolute Gravimetry: Role of CCM and IAG. Pálinkáš. http://www.iag-aig.org/index.php?tpl=text&id_c=7&id_t=553.

MDDIAI. (2023). On approval of the instruction for creation and updating of the National Spatial Data Infrastructure.

Wziontek, H., Bonvalot, S., Falk, R., Gabalda, G., Mäkinen, J., Pálinkás̆, V., Rülke, A., & Vitushkin, L. (2021). Status of the International Gravity Reference System and Frame. Journal of Geodesy, 95(1), 7. https://doi.org/10.1007/s00190-020-01438-9.

Торге,Вольфганг. Гравиметрия = Gravimetry: Gravimetry / Вольфганг Торге; Пер. с англ. Г. А. Шанурова под ред. А. П. Юзефовича. - Москва: Мир, 1999. - 428 с.: ил.; 24 см.; ISBN 5-03-002809-9

Scintrex Limited. (2012). CG-5 Operating Manual. CG-5 Scintrex Autograv System (8th ed.).

Sousa, M. A. De, & Santos, A. A. Dos. (2010). Absolute Gravimetry on the Agulhas Negras Calibration Line. Revista Brasileira de Geofísica, 28(2), 165–174.

Finnish Geodetic Institute. (2011). Geodetic Operations in Finland 2008 – 2011.

Timmen, L., Schilling, M., Reinhard, F., Lothhammer, A., Gabriel, G., & Vogel, D. (2018). Relative Gravimeter Calibration System for High Accurate Applications. Proceedings of the European Geosciences Union General Assembly.

Flury, J., Peters, Th., Schmeer, M., Timmen, L., & Falk, R. (2007). Precision Gravimetry in the New Zugspitze Gravity Meter Calibration System.

Marti, U., Baumann, H., Bu¨rki, B., & Gerlach, C. (2015). A First Traceable Gravimetric Calibration Line in the Swiss Alps. In S. Jin & R. Barzaghi (Eds.), IGFS 2014 (Vol. 144, pp. 17–25). Springer International Publishing.

Werhahn, O., Olson, D. A., Kuanbayev, C., & Henson, A. (2023). The CIPM MRA—success and performance. In Metrologia (Vol. 60, Issue 4). https://doi.org/10.1088/16817575/ace191

Ruess, D., & Meurers, B. (2000). Gravity Measurements at the Hochkar Calibration Line (HCL).

Ruess, D., & Ullrich, C. (2015). Renewal of the Austrian Gravimeter Calibration Line HCL. VGI - Österreichische Zeitschrift Für Vermessung Und Geoinformation, 103, 182.

Sas, A., Sas-Uhrynowski, A., Cisak, M., & Siporski, L. (2009). Vertical Gravimetric Calibration Baseline in the Tatra Mountains of Poland. Geoinformation Issues, 1(1), 19–32.

Repanić, M., Grgić, I., & Bašić-Zagreb, T. (2013). Prijedlog gravimetrijske kalibracijske baze Republike Hrvatske. Geodetski List, 67(2).

Oja, T., Turk, K., & Jurgenson, H. (2014). Evaluating the Calibration of Scintrex CG-5 Spring Gravimeters.

Oshchepkov, I. A., Sermyagin, R. A., Spesivtsev, A. A., Yushkin, V. D., Pozdnyakov, A. V, Kovrov, A. A., & Yuzefovich, P. A. (2016). Gravity Measurements in the Moscow Gravity Network.

Geophysical Center RAS. (2019). National Report for the IAG of the IUGG 2015–2018 (Issue GRPS-4-2016BS040).

ФГУП ‘ВНИИМ’ «ГРСИ РФ №65252-16: «Полигон Казанский гравиметрический». Отчет. Санкт-Петербург: ВНИИМ им. Д.И. Менделеева, 2016. 5с.

ФГУП ‘ВНИИМ’» ГРСИ РФ №73480-18: «Полигон Иркутский гравиметрический». Отчет. Санкт-Петербург: ВНИИМ им. Д.И. Менделеева, 2018. 5с.

Cheraghi, H., Hinderer, J., Saadat, S. A., Bernard, J.D., Djamour, Y., Tavakoli, F., Arabi, S., & Azizian Kohan, N. (2020). Stability of the Calibration of Scintrex Relative Gravimeters as Inferred from 12 Years of Measurements on a Large Amplitude Calibration Line in Iran. Pure and Applied Geophysics, 177(2), 991–1004.

Wang, L.S. et al. (2014a) ‘The Use of the A10-022 Absolute Gravimeter to Construct the Relative Gravimeter Calibration Baselines in China’, Metrologia, 51(3), pp. 203–211.

Wang, L.S. et al. (2014b) ‘The use of the A10-022 absolute gravimeter to construct the relative gravimeter calibration baselines in China’, Metrologia, 51(3), p. 203.

Азаркина, Е. А. «Отчет о создании эталонных гравиметрических полигонов на территории Казахской ССР в 1976 году». Отчет. Министерство геологии СССР. НПО Союзгеофизика. Специальная региональная геофизическая экспедиция. Министерсто геологии Казахской ССР. Южно-Казахстанское территориальное геологическое управление. Казахстанская аэрогеолого-геофизическая экспедиция, 1977.

Лапин А.В., Гугнин А.Е., Бекешев А.А. и др. «Отчет по метрологии государственного гравиметрического полигона Капчагай – Алматы». Отчет. Алматы: Товарищество с ограниченной ответственностью «Научно- производственный центр Геокен», 2001. 48с.

Published

2024-12-12

How to Cite

Kemerbayev . Н., Mussina Г. ., Shkiyeva М., Samarkhanov К. ., Batalova . А., & Rakhimzhanov . А. (2024). AN OVERVIEW OF INTERNATIONAL CALIBRATION SYSTEMS AND THEIR ROLE IN ENVIRONMENTAL RESEARCH. Hydrometeorology and Ecology, (4), 152–166. https://doi.org/10.54668/2789-6323-2024-115-4-152-166

Issue

Section

REVIEW