REGIONAL AGROMETEOROLOGICAL MONITORING NETWORK FOR FORECASTING THE WATER REGIME OF AGROCENOSES IN THE ARID REGIONS OF KAZAKHSTAN

Authors

DOI:

https://doi.org/10.54668/2789-6323-2025-118-3-34-47

Keywords:

agrometeorological network, soil moisture, Selyaninov hydrothermal coefficient

Abstract

The article discusses the relevance of conducting ground-based instrumental monitoring of temperature and moisture in the soil in conditions of water scarcity in arid regions of the world. The description of the instrument base of agrometeorological hospitals deployed in the period 2021-2024 within the framework of projects of the Ministry of Education of the Republic of Kazakhstan on the basis of farms in the East Kazakhstan region is given. The preliminary results of processing measurements of soil temperature and humidity in a meter layer in a field that during the growing season of 2022...2024 are presented. It was located under sideral steam (Sickle alfalfa) on the territory of the Experimental Farm of Oilseeds LLP. The measured data are in good agreement with the results of observations by the National Kazhydromet Network and satisfactorily reflect the overall dynamics of the critical parameters of crop production in the growing seasons of 2022, 2023, and 2024, depending on moisture availability. The results obtained on the dynamics of air temperature, precipitation, as well as soil temperature and humidity in the meter layer can be useful to farm managers when choosing crop rotations, including various forms of field steaming, which increase moisture conservation, which is especially important in the arid conditions of Kazakhstan. The results may be of interest to insurance companies and decision makers in the field of crop production.

References

Саммит "Единая вода": на пути к миру, устойчивому к воздействию воды [Электрон. ресурс] // Министерство водных ресурсов и ирригации Республики Казахстан. – URL: https://www.gov.kz/memleket/entities/water/documents/details/783067?lang=ru (дата обращения: 28.01.2025).

Wang-Erlandsson, L., Tobian, A., Van der Ent, R. J., Fetzer, I., te Wierik, S., Porkka, M., ... & Rockström, J. (2022). A planetary boundary for green water. Nature Reviews Earth & Environment, 3(6), 380-392. https://doi.org/10.1038/s43017-022-00287-8

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., ... & Teuling, A. J. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3-4), 125-161. https://doi.org/10.1016/j.earscirev.2010.02.004

Liu, Y., & Li, Y. (2019). Synergy and trade-off between carbon sequestration and soil water balance: impact of revegetation choices. Environmental Earth Sciences, 78(23), 651.

Humphrey, V., Berg, A., Ciais, P., Gentine, P., Jung, M., Reichstein, M., ... & Frankenberg, C. (2021). Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature, 592(7852), 65-69. https://doi.org/10.1038/s41586-021-03325-5

Boyer, T., Bartow-Gillies, E., Abida, A., Ades, M., Adler, R., Adusumilli, S., ... & Feely, R. A. (2023). Introduction [in “State of the Climate in 2022 “]. https://doi.org/10.1175/BAMS-D-23-0090.1

Qiao, L., Zuo, Z., Zhang, R., Piao, S., Xiao, D., & Zhang, K. (2023). Soil moisture–atmosphere coupling accelerates global warming. Nature Communications, 14(1), 4908. https://doi.org/10.1038/s41467-023-40641-y

Zhang, X., Feng, G., & Sun, X. R. (2024). Advanced technologies of soil moisture monitoring in precision agriculture. Journal of Agriculture and Food Research, 101473. https://doi.org/10.1016/j.jafr.2024.101473

Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J. C., Fritz, N., Froissard, F., ... & Martin, E. (2008). From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations. Hydrology and Earth System Sciences, 12(6), 1323-1337. https://doi.org/10.5194/hess-12-1323-2008

Li, P., Zha, Y., Shi, L., Tso, C. H. M., Zhang, Y., & Zeng, W. (2020). Comparison of the use of a physical-based model with data assimilation and machine learning methods for simulating soil water dynamics. Journal of Hydrology, 584, 124692., ISSN 0022-1694. https://doi.org/10.1016/j.jhydrol.2020.124692

Wyatt, B. M., Ochsner, T. E., & Zou, C. B. (2021). Estimating root zone soil moisture across diverse land cover types by integrating in-situ and remotely sensed data. Agricultural and Forest Meteorology, 307, 108471. Qin Jun, Tian Jiaxin, Yang Kun, Lu Hui, Li Xin, Yao Ling, Shi Jiancheng, Bias correction of satellite soil moisture through data assimilation, Journal of Hydrology, Volume 610, 2022, 127947, ISSN 0022-1694. https://doi.org/10.1016/j.jhydrol.2022.127947

Qin, J., Tian, J., Yang, K., Lu, H., Li, X., Yao, L., & Shi, J. (2022). Bias correction of satellite soil moisture through data assimilation. Journal of Hydrology, 610, 127947, ISSN 0022-1694. https://doi.org/10.1016/j.jhydrol.2022.127947

Liu, E., Zhu, Y., Lü, H., Horton, R., Gou, Q., Wang, X., ... & Pan, Y. (2023). Estimation and assessment of the root zone soil moisture from near-surface measurements over Huai River Basin. Atmosphere, 14(1), 124. https://doi.org/10.3390/atmos14010124

Global Climate Observing System (GCOS) https://gcos.wmo.int/ru/node/24885

Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., ... & Sabia, R. (2021). The International Soil Moisture Network: serving Earth system science for over a decade. Hydrology and Earth System Sciences Discussions, 2021, 1-83. https://doi.org/10.5194/hess-25-5749-2021

Ikonen, J., Vehviläinen, J., Rautiainen, K., Smolander, T., Lemmetyinen, J., Bircher, S., & Pulliainen, J. (2016). The Sodankylä in situ soil moisture observation network: An example application of ESA CCI soil moisture product evaluation. Geoscientific Instrumentation, Methods and Data Systems, 5(1), 95-108. https://doi.org/10.5194/gi-5-95-2016

Reynolds, S. G. (1970). The gravimetric method of soil moisture determination Part IA study of equipment, and methodological problems. Journal of Hydrology, 11(3), 258-273. https://doi.org/10.1016/0022-1694(70)90066-1

Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., ... & Wendroth, O. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose zone journal, 7(1), 358-389. https://doi.org/10.2136/vzj2007.0143

Hodges, B., Tagert, M. L., Paz, J. O., & Meng, Q. (2023). Assessing in-field soil moisture variability in the active root zone using granular matrix sensors. Agricultural Water Management, 282, 108268, ISSN 0378-3774. https://doi.org/10.1016/j.agwat.2023.108268

Беляев, В. И., Силантьева, М. М., Никулин, А. М., & Бондарович, А. А. (2021). Кулунда: сельское хозяйство и низкоэмиссионные технологии устойчивого землепользования: коллективная монография. URL: https://cyberleninka.ru/article/n/temperaturnyy-rezhim-vozduha-i-pochvy-po-dannym-meteorologicheskoy-i-pochvenno-gidrologicheskoy-monitoringovoy-seti-v-kulundinskoy (дата обращения: 07.04.2025).

Nyssanbayeva, A. S., Cherednichenko, A. V., Cherednichenko, V. S., Abayev, N. N., & Madibekov, A. S. (2019). Bioclimatic conditions of the winter months in Western Kazakhstan and their dynamics in relation to climate change. International journal of biometeorology, 63, 659-669.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. DOI: 10.1127/0941-2948/2006/0130.

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific data, 5(1), 1-12. https://doi.org/10.1038/sdata.2018.214

Kazakhstan. Climate Change Overview Country Summary. The Climate Change Knowledge Portal (CCKP) [Электронный ресурс: https://climateknowledgeportal.worldbank.org/country/kazakhstan (дата обращения 28.01.2025)].

Пермитина В. Н., Байбулов А. Б. Растительность лесостепной зоны Северного Казахстана, классификация и антропогенная трансформация // Проблемы ботаники Южной Сибири и Монголии. – 2019. – Т. 18, № 1. – С. 360–364. – DOI: https://doi.org/10.14258/pbssm.2019072.

Chupakhin, V. Physical Geography of Kazakhstan; Mektep Press: Almaty, Kazakhstan, 1968; p. 260. [Google Scholar]

Uspanov, U.U.; Evstifeev, Y.G.; Storozhenko, D.M.; Lobova, E.V.; Kolkhozhaev, M.K.; Kotin, N.I.; et al. Soil Map of the Kazakh SSR; Ed. Voronina, L.M.; Scale: 1 cm to 25 km. Available online: http://www.etomesto.ru/map-kazakhstan_pochva-1976/ (accessed on 19 March 2025).

Осипова В. В. Влияние разных доз минеральных удобрений на формирование надземной массы люцерны серповидной в условиях мерзлотных засоленных почв Якутии // Вестник Северо-Казахстанского университета им. М. Козыбаева. – 2021. – № 2 (47). – С. 54–58.

Żarczyński, P. J., Krzebietke, S. J., Sienkiewicz, S., & Wierzbowska, J. (2023). The Role of Fallows in Sustainable Development. Agriculture, 13(12), 2174. https://doi.org/10.3390/agriculture13122174

Селянинов Г. Т. О сельскохозяйственной оценке климата //Труды по сельскохозяйственной метеорологии. – 1928. – Т. 20. – С. 165-177.

Селянинов Г. Т. Принципы агроклиматического районирования СССР //Вопросы агроклиматического районирования СССР. М.: МСХ СССР. – 1958. – С. 7-14.

Svoboda, M., & Fuchs, B. (2016). World Meteorological Organization (WMO) and Global Water Partnership (GWP). Handbook of Drought Indicators and Indices. Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series, 2. [Электронный https://www.droughtmanagement.info/literature/GWP_Handbook_of_Drought_Indicators_and_Indices_2016.pdf (дата обращения 12.02.2024)].

Crabtree, B. (2010). In Search for Sustainability in Dryland Agriculture, Crabtree Agricultural Consulting, Australia. 204. URL: www. no-till. com. au (19. 3. 2023.).

Kassam, A., Friedrich, T., Shaxson, F., & Pretty, J. (2009). The spread of conservation agriculture: justification, sustainability and uptake. International journal of agricultural sustainability, 7(4), 292-320.

Байшоланов С. С. и др. Агроклиматическое районирование сельскохозяйственных культур в Северном Казахстане //Гидрометеорология и экология. – 2017. – №. 3 (86). – С. 17-28.

Саранча, сайгаки, засуха и ливни. 2023 год назвали худшим для аграриев [Электрон. ресурс]. – 2023. – URL: https://tengrinews.kz/kazakhstan_news/sarancha-saygaki-zasuha-livni-2023-god-nazvali-hudshim-510903/ (дата обращения: 28.01.2025).

Засуху прогнозируют в следующем агросезоне в Казахстане [Электрон. ресурс]. – Режим доступа: https://apk-news.kz/news/item-4319 (дата обращения: 12.04.2025).

Ральф М., Беляев В. И., Бондарович А. А., Понькина Е. В., Щербинин В. В., Быков Н. И. Сравнительный анализ температурного режима южных черноземов в условиях сухостепной зоны Кулундинской равнины Алтайского края // Вестник Алтайского государственного аграрного университета. – 2017. – № 11 (157). – С. 48–56.

Беляев В. И., Бондарович А. А., Понькина Е. В., Щербинин В. В., Шмидт Г., Мацюра А. В., ... Рудев Н. В. Температурный режим воздуха и почвы по данным метеорологической и почвенно-гидрологической мониторинговой сети в Кулундинской равнине за вегетационные периоды 2013–2016 гг. // Вестник Алтайского государственного аграрного университета. – 2017. – № 3 (149). – С. 30–37.

Published

2025-10-01

How to Cite

Bondarovich А. ., Nurekenov Д., Karmenova М. ., Zhomartkan Н., & Kamenov Ю. (2025). REGIONAL AGROMETEOROLOGICAL MONITORING NETWORK FOR FORECASTING THE WATER REGIME OF AGROCENOSES IN THE ARID REGIONS OF KAZAKHSTAN . Hydrometeorology and Ecology, (3), 34–47. https://doi.org/10.54668/2789-6323-2025-118-3-34-47

Issue

Section

METEOROLOGY