AIR QUALITY MONITORING IN THE WEST KAZAKHSTAN REGION: PRINCIPLES, METHODS, APPROACHES
DOI:
https://doi.org/10.54668/2789-6323-2024-113-2-128-149Keywords:
ecology, monitoring, atmospheric air, pollution sources, pollutants, meteorological conditions, modeling, Western KazakhstanAbstract
The main approaches and methods of studying the characteristics and conditions of atmospheric pollution on the example of Western Kazakhstan are considered. The classification and grouping of applied approaches by topics, methods, time intervals and other relevant criteria was conducted. An analysis of the available information on the sources and volumes of emissions into the atmosphere, as well as on the systems for monitoring the pollution of the air basin, was carried out. It is shown that to increase the effectiveness of the atmospheric air quality management system, it is expedient to use a complex approach taking into account the influence of meteorological factors and synoptic conditions that determine different levels of pollution. An analytical review of modern methods of modeling the spread of pollutants in atmospheric air showed the feasibility of using statistical methods integrated with deep machine learning and the Eulerian continuum model of turbulent diffusion. The obtained conclusions will allow further use of an integrated approach to improve the atmospheric air quality management system of the studied region.
References
Национальный доклад о состоянии окружающей среды и об использовании природных ресурсов Республики Казахстан за 2021 год. – Электронный ресурс: https://www.gov.kz/memleket/entities/ecogeo/documents/details/383692?lang=ru (дата обращения 15.01.2024 г.).
Информационные бюллетени о состоянии окружающей среды Республики Казахстан. – Электронный ресурс: https://www.kazhydromet.kz/ru/ecology/ezhemesyachnyy-informacionnyy-byulleten-o-sostoyanii-okruzhayuschey-sredy (дата обращения 24.01.2024 г.).
Бюро национальной статистики Республики Казахстан. – Электронный ресурс: https://stat.gov.kz/ru/(дата обращения 10.01.2024 г.).
Сальников В.Г. Эколого-климатический потенциал Казахстана. - Алматы: Қазақ университеті, 2006. - 230 с.
Adilet, 2021. Environmental code of the Republic of Kazakhstan. – URL: https://adilet.zan.kz/rus/docs/V2100023517 (дата обращения 15.01.2024 г.).
IQAir, 2022a. World’s Most Polluted Countries & Regions (Historical Data 2018-2021). – URL: https://www.iqair.com/world-most-polluted-countries
United States Air Quality Index (AQI) Live. – URL: https://www.aqi.in/us/dashboard/united-states
Lawrence M.G., Rasch P.J., von Kuhlmann R., Williams J., Fischer H., de Reus M., Lelieveld J., Crutzen P.J., Schultz M., Stier P., Huntrieser H., Heland J., Stohl A., Forster C., Elbern H., Jakobs H., Dickerson R.R. Global chemical weather forecasts for field campaign planning: predictions and observations of large-scale features during MINOS, CONTRACE and INDOEX // Atmospheric Chemistry & Physics. – 2003. – V. 3. – №1. – Р. 267-289. https://doi.org/10.5194/acp-3-267-2003
Li Q., Jiang J.H., Wu D.L., Read W.G., Livesey N.J., Waters J.W., Zhang Y., Wang B., Filipiak M.J., Davis C.P., Turquety S., Wu S., Park R.J., Yantosca R.M., Jacob D.J. Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations // Geophysical Research Letters. – 2005. – V. 32. – №14. –DOI: 10.1029/2005GL022762
Sokhi R.S., Baklanov A.A., Shlunzen K.H. Mesoscale modelling for meteorological and air pollution application. Anthem Press, 2018. 376 p.
Волошин В.Г. Динамическая модель загрязнения атмосферы с метеорологическим препроцессором. – Одесса: Экология, 2013. – 296 с.
Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality forecasting, part I: History, techniques, and current status. Atmos. Environ. 2012, 60, р. 632–655.
Taheri Shahraiyni, H.; Sodoudi, S. Statistical Modeling Approaches for PM10 Prediction in Urban Areas; A Review of 21st-Century Studies. Atmosphere 2016, 7, 15.
Sykes, A.O. An Introduction to Regression Analysis. Am. Stat. 1993, 61, 101.
Mendenhall, W. Second Course in Statistics, A: Regression Analysis. Int. J. Gynaecol. Obstet. Off. Organ. Int. Fed. Gynaecol. Obstet. 2011, 78 (Suppl. 1), 1–5.
Mohammad Ahmad, Weihu Cheng, Zhao Xu, Abdul Kalam Outlier Detection of Air Quality for Two Indian Urban Cities Using Functional Data Analysis, Open Journal of Air Pollution, 2023, 12, 79-91.
Vikas Singh a, Shweta Singh, Akash Biswal, Amit P. Kesarkar, Suman Mor, Khaiwal Ravindra Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environmental Pollution 266 (2020).
Chen Z., Zhuang Y., Xie X., Chen D., Cheng N., Yang L., Li R. Understanding long-term variations of meteorological influences on ground ozone concentrations in Beijing During 2006–2016 // Environmental Pollution. – 2019. – V. 245. – P. 29–37. DOI: 10.1016/j.envpol.2018.10.117.
Meng C., Cheng T., Gu X., Shi S., Wang W., Wu Y., Bao F. Contribution of meteorological factors to particulate pollution during winters in Beijing // Science of the Total Environment. – 2019. – V. 656. – P. 977–985. –
DOI: 10.1016/j.scitotenv.2018.11.365
Kai Wang, · Chengxiu Ling· Ying Chen · Zhengjun Zhang Spatio‑temporal joint modelling on moderate and extreme air pollution in Spain,Environmental and Ecological Statistics (2023) 30:601–624.
Elena Cerezuela-Escudero, Juan Manuel Montes-Sanchez, Juan Pedro Dominguez-Morales·Lourdes Duran-Lopez1 · Gabriel Jimenez-Moreno A systematic comparison of different machine learning models for the spatial estimation of air pollution, Applied Intelligence, 2023.
Shelby Zangari, Dustin T. Hill, Amanda T. Charette, Jaime E. Mirowsky Air quality changes in New York City during the COVID-19 pandemic. Science of The Total Environment, Volume 742, 10 November 2020, 140496. – URL: https://doi.org/10.1016/j.scitotenv.2020.140496.
Deng, J.L. Control problems of grey system. Syst. Control Lett. 1982, 1, 288–294.
Mishra, D.; Goyal, P. NO2 forecasting models Agra. Atmos. Pollut. Res. 2015, 6, 99–106.
Lu W.Z., Wang W.J., Wang X.K., Xu Z.B., Leung A.Y.T. Using improved neural network model to analyze RSP, NOx and NO2 levels in urban air in Mong Kok, Hong Kong Environmental Monitoring and Assessment, 87 (2003), p. 235-254.
Крамарева Л.С., Андреев А.И., Блощинский В.Д., Кучма М.О., Давиденко А.Н., Пустатинцев И.Н., Шамилова Ю. А., Холодов Е.И., Королёв С.П. Использование нейронных сетей в задачах гидрометеорологии // Вычислительные технологии. – 2019. – Т. 24. – № 6. – С. 50-59.
Shankar Subramaniam, Naveenkumar Raju, Abbas Ganesan, Nithyaprakash Rajavel, Maheswari Chenniappan, Chander Prakash Alokesh Pramanik, Animesh Kumar Basak and Saurav Dixit Artificial Intelligence Technologies for Forecasting Air Pollution and Human Health: A Narrative Review, Sustainability, 2022. – URL: https://doi.org/10.3390/su14169951.
A. Alimissis, Kostas Philippopoulos, Chris Tzanis, Despina Deligiorgi Spatial estimation of urban air pollution with the use of artificial neural network models, Atmospheric Environment, Volume 191, October 2018, Pages 205-213.
Tanisha Madan, Shrddha Sagar, Deepali Virmani Air Quality Prediction using Machine Learning Algorithms –A Review. Published in 2nd International Conference 18 December 2020, Environmental Science, Computer Science2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN).
Huixiang Liu, Qing Li, Dongbing Yu, Yu Gu Air Quality Index and Air Pollutant Concentration Prediction Based on Machine Learning Algorithms. Appl. Sci. 2019, 9(19), 4069. – URL: https://doi.org/10.3390/app9194069
Katharine M. Banner, Kathryn M. Irvine, Thomas J. Rodhouse The use of Bayesian priors in Ecology: The good, the bad and the not great. Еcology and Еvolution, 2020. Volume11, Issue8. – URL: https://doi.org/10.1111/2041-210X.13407
Обухов А.Д., Краснянский М.Н. Нейросетевая архитектура информационных систем // Компьютерные науки. - 2019. - Т. 29. - Вып. 3. - С. 438–455.
Svozilík V., Svozilíková Krakovská A., BittaJ., Jančík P. Comparison of the Air Pollution Mathematical Model of PM10 and Moss Biomonitoring Results in the Tritia Region // Atmosphere 2021, 12(6), 656. URL: https://doi.org/10.3390/atmos12060656
EPA, U.S. EPA OAQPS Guideline Series - GUIDELINE ON AIR QUALITY MODELS. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/ 91005584.PDF?Dockey=91005584.PDF
Leelossy A., Molnar Jr. F., Izsak F., Havasi A., Lagzi I., Meszaros R. Dispersion modeling of air pollutants in the atmosphere: a review // Central European Journal of Geosciences. 2014. - V. 6. - P. 257-278. DOI:10.2478/s13533-012-0188-6
Старченко А.В., Шельмина Е.А., Кижнер Л.И., Одинцов С.Л. Численное моделирование качества воздуха над городом Томском при слабом ветре // Вестник Томского государственного университета. - 2022. - №79. - С. 25-43. – doi: 10.17223/19988621/79/3.
Aermod implementation guide EPA-454/B-23-009 / United States Environmental Protection Agency. - 2023. URL: https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aermod_implementation_guide.pdf.
Melo A., Santos J.M., Mavroidis I., Reis Jr N.C. Modelling of odour dispersion around a pig farm building complex using AERMOD and CALPUFF. Comparison with wind tunnel results // Building and environment. – 2012. – V. 56. – P. 8-20.
Рашевский Н.М. Поддержка принятия решений в процессе мониторинга загрязнения атмосферного воздуха городских территорий. Диссертация на соискание ученой степени кандидата технических наук. - Волгоград, 2019. - 144 с.
Recommendations when using the GRAL/GRAMM modelling system. 2020. – URL: https://github.com/GralDispersionModel/GRALRecommendations
Hurley P. TAPM V4. Part 1: Technical Description // CSIRO Marine and Atmospheric Research. – 2008. – №25. – 59 p. – URL: https://www.cmar.csiro.au/research/tapm/docs/tapm_v4_technical_paper_part1.pdf
CALPUFF Modeling System. - Exponent Inc. - 2019. - 226 р. – URL: https://www.src.com/calpuff/download/CALPUFF_UsersGuide.pdf
Kim G., Lee M.I., Lee S., Choi S.D., Kim S.J., Song C.K. Numerical modeling for the accidental dispersion of hazardous air pollutants in the urban metropolitan area // Atmosphere. - 2020. - V. 11(5), 477. doi:10.3390/atmos11050477.
Marchuk G.I. Mathematical Models in Environmental Problems. Elsevier Science. - 1986. - 220 p.
Пененко В.В., Алоян А.Е. Модели и методы для задач охраны окружающей среды. – Новосибирск: Наука. Сибирское отделение, 1985. – 256 с.
Дробышевский Н.И., Зайчик Л.И., Мукин Р.В., Стрижов В.Ф., Филиппов А.С. Развитие и применение диффузионноинерционной модели для расчета газодисперсных турбулентных течений // Теплофизика и аэромеханика. - 2009. - T. 16. - № 4. - C. 553-572.
Baklanov A., Korsholm U., Nuterman R., Mahura A., Nielsen K.P., Sass B.H., Rasmussen A., Zakey A., Kaas E., Kurganskiy A., Sørensen B., González-Aparicio I. Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2) // Geosci. Model Dev. 2017. V. 10. P. 2971–2999. – doi: 10.5194/gmd10-2971-2017
Srivastava I., Yarragunta S., Kumar R., Mitra D. Distribution of surface carbon monoxide over the Indian subcontinent: Investigation of source contributions using WRF-Chem // Atmospheric Environment. - 2020. - V. 243(15). - Р. 117838. – doi: 10.1016/j.atmosenv.2020.117838
Grell, G., Peckham S.E., Schmitz R., McKeen S., Frost G., Skamarock W.C., Еder B. Fully coupled “online” chemistry within the WRF model // Atmospheric Environment. - 2005. - V. 39(37), - P. 6957–6975. –
doi: 10.1016/j.atmosenv.2005.04.027
Powers J.G., Klemp J.B., Skamarock W.C., Davis C.A., Dudhia J., Gill D.O. et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions // Bulletin of the American Meteorological Society/ - 2017. - V. 98(8). - P. 1717–1737. – doi:10.1175/BAMS-D-15-00308.1
Hu J., Chen J., Ying Q., Zhang H. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system // Atmospheric Chemistry and Physics. - 2016. - V. 16(16). - P. 10333–10350. – doi:10.5194/acp-16-10333-2016
Shahrokhishahraki N., Rayner P.J., Silver J.D., Thomas S., Schofield R. High-resolution modeling of gaseous air pollutants over Tehran and validation with surface and satellite data // Atmospheric Environment. - 2022. - V. 270. - P. 118881. URL: https://doi.org/10.1016/j.atmosenv.2021.118881.
Giovannini L., Ferrero E., Karl T., Rotach M.W., Staquet C., Castelli S.T., Zardi D. Atmospheric Pollutant Dispersion over Complex Terrain: Challenges and Needs for Improving Air Quality Measurements and Modeling // Atmosphere. - 2020. - V. 11(6), 646. – https://doi.org/10.3390/atmos11060646
Sofiev M., Vira J., Prank M., Soares J., Kouznetsov R. An outlook of System for Integrated modeLling of Atmospheric coMposition SILAM v.5. In: Steyn, D., Builtjes, P., Timmermans, R. (eds) Air Pollution Modeling and its Application XXII. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. - 2014. - Р. 397-400. – URL: https://doi.org/10.1007/978-94-007-5577-2_67
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hydrometeorology and ecology
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.