EMULATION OF AIR QUALITY SENSORS IN AN URBAN SMART CITY ENVIRONMENT

Authors

  • A. Yerimbetova Institute of Information and Computational Technologies CS MES RK, Kazakh National Research Technical University named after K.I. Satbayev
  • R. Mukhamediev Institute of Information and Computational Technologies CS MES RK, Kazakh National Research Technical University named after K.I. Satbayev
  • A. Terekhov Institute of Information and Computational Technologies CS MES RK
  • A. Oxenenko Kazakh National Research Technical University named after K.I. Satbayev
  • Ya. Kuchin Institute of Information and Computational Technologies CS MES RK, Kazakh National Research Technical University named after K.I. Satbayev
  • A. Symagulov Institute of Information and Computational Technologies CS MES RK, Kazakh National Research Technical University named after K.I. Satbayev
  • D. Kusayin Kazakh National Research Technical University named after K.I. Satbayev
  • P. Rystygulov Kazakh National Research Technical University named after K.I. Satbayev

DOI:

https://doi.org/10.54668/2789-6323-2024-114-3-87-99

Keywords:

air quality, smart city, machine learning

Abstract

Urban air pollution poses a serious threat to human health. To monitor it, both individual sensors and systems are used to assess the concentration of dust particles PM1, PM2.5, PM10 and organic compounds. However, the reliability of the sensor system cannot be 100 percent. From time to time, certain sensors in a distributed system fail. For this reason, it is very usefulto emulate their readings based on the readings of the remaining sensors. The work describes a data set and proposes a machine learning model, which, based on the readings of functional sensors and weather conditions at the data collection sites, simulates the readings of a failed sensor. The accuracy of such emulation for certain types of pollution has been assessed (the coefficient of determination ranges from 0.43 to 0.61).

References

Russell A., Ghalaieny M., Akhmetov K.K., Mukanov Y., McCann M., Vitolo C., Althonayan A. A spatial survey of environmental indicators for Kazakhstan: an examination of current conditions and future needs // International Journal of Environmental Research. – 2018. – Vol. 12. – P. 735-748. – DOI: https://doi.org/10.1007/s41742-018-0134-7

Международное информационное агентство «DKnews.kz». Казахстан в топ-позициях по уровню загрязнения. – URL: https://dknews.kz/ru/eksklyuzivdk/221987-kazahstan-v-top-poziciyah-po-urovnyuzagryazneniya (дата обращения 20.07.2023).

Kerimray A., Rojas-Solórzano L., Amouei Torkmahalleh M., Hopke P. K., Ó Gallachóir B.P. Coal use for residential heating: Patterns, health implications and lessons learned // Energy for Sustainable Development. – 2017. – Vol. 40. – P.19–30. – DOI:10.1016/j.esd.2017.05.005

Информационно-правовая системанормативных правовых актовРеспублики Казахстан «Әділет». О Стратегическом плане Министерства транспорта и коммуникаций Республики Казахстан на 2011 - 2015 годы. – URL: https://adilet.zan.kz/rus/docs/P1100000129 (дата обращения 21.07.2023).

KAZENERGY. Национальный энергетический доклад 2017 KAZENERGY. – URL: http://www.kazenergy.com/upload/document/energyreport/NationalReport17_ru.pdf (дата обращения 21.07.2023).

Kerimray A., Rocco M., Rojas-Solórzano L., Gallachoir B. Causes of energy poverty in a cold and resource-rich country: evidence from Kazakhstan // Local Environment. – 2017. – DOI: 10.1080/13549839.2017.1397613.

Karatayev M., Pedro R., Mourao Z.S., Konadu D.D., Nilay S., Michèle C. The water-energy-food nexus in Kazakhstan: challenges and opportunities // Energy Procedia. – 2017. – Vol.125. – P.63-70. – DOI: 10.1016/j.egypro.2017.08.064.

Current Pollution Index by City. – URL: ttps://www.numbeo.com/pollution/rankings_current.jsp (дата обращения 21.07.2023).

Kerimray A., Azbanbayev E., Kenessov B., Plotitsyn P., Alimbayeva D., Karaca, F. Spatiotemporal Variations and Contributing Factors of Air Pollutants in Almaty, Kazakhstan // Aerosol and Air Quality Research. – 2020. – Vol. 20. – P.1340-1352. – DOI:10.4209/aaqr.2019.09.0464.

Nugmanova D., Feshchenko Yu., Iashyna L., Gyrina O., Malynovska K., Mammadbayov E., Akhundova I., Nurkina N., Tariq L., Makarova J., Vasylyev A. The prevalence, burden and risk factors associated with chronic obstructive pulmonary disease in Commonwealth of Independent States (Ukraine, Kazakhstan and Azerbaijan): Results of the CORE study // BMC Pulmonary Medicine. – 2018. – 18. – DOI: 10.1186/s12890-018-0589-5.

Ke G., Meng Q., Finley T., Wang T., Chen W., Ma W., Ye Q., Liu T.-Y. Lightgbm. A highly efficient gradient boosting decision tree // Advances in neural information processing systems. – 2017. – Vol.30. – P.3149-3157.

Bentéjac C., Csörgő A., Martínez-Muñoz G. A comparative analysis of gradient boosting algorithms // Artificial Intelligence Review. – 2021. – Vol. 54. – P.1937-1967.

Chen T., Guestrin C. Xgboost: A scalable tree boosting system //Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. – 2016. – P. 785-794.

Mukhamediev R., Amirgaliyev Y., Kuchin Y., Aubakirov M., Terekhov A., Merembayev T., Yelis M., Zaitseva E., Levashenko V., Popova Y., et al. Operational Mapping of Salinization Areas in Agricultural Fields Using Machine Learning Models Based on Low-Altitude Multispectral Images // Drones. – 2023. – Vol.7(357). https://doi.org/10.3390/drones7060357

Mukhamediev R.I., Kuchin Y., Amirgaliyev Y., Yunicheva N., Muhamedijeva E. Estimation of Filtration Properties of Host Rocks in Sandstone-Type Uranium Deposits Using Machine Learning Methods // IEEE Access. – 2022. – Vol.10. – P.18855–18872.

Mukhamediev R.I., Merembayev T., Kuchin Y., Malakhov D., Zaitseva E., Levashenko V., Popova Y., Symagulov A., Sagatdinova G., Amirgaliyev Y. Soil Salinity Estimation for South Kazakhstan Based on SAR Sentinel-1 and Landsat-8,9 OLI Data with Machine Learning Models // Remote Sens. – 2023. – Vol.15, 4269. – DOI:https://doi.org/10.3390/rs15174269

Mukhamediev R.I., Terekhov A., Sagatdinova G., Amirgaliyev Y., Gopejenko V., Abayev N., Kuchin Y., Popova Y., Symagulov A. Estimation of the Water Level in the Ili River from Sentinel-2 Optical Data Using Ensemble Machine Learning // Remote Sens. – 2023. – 15, 5544. – DOI: https://doi.org/10.3390/rs15235544

Lundberg S.M., Lee S.-I. A unified approach to interpreting model predictions // Adv. Neural Inf. Process. Syst. – 2017. – 30. – P.1–10.

Scikit-learn. Machine Learning in Python. Available online: https://scikit-learn.org/stable/ (accessed on 1 February 2024)

Scikit-optimize. Sequential model-based optimization in Python https://scikit-optimize.github.io/stable/ (accessed on 1 February 2024)

Raschka S. MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack // Journal of Open Source Software. – 2018. – 3. – 638. – DOI:10.21105/joss.00638.

Published

2024-10-16

How to Cite

Yerimbetova . А., Mukhamediev Р., Terekhov А., Oxenenko . А., Kuchin Я. ., Symagulov А. ., Kusayin Д. ., & Rystygulov П. . (2024). EMULATION OF AIR QUALITY SENSORS IN AN URBAN SMART CITY ENVIRONMENT. Hydrometeorology and Ecology, (3), 87–99. https://doi.org/10.54668/2789-6323-2024-114-3-87-99

Issue

Section

ECOLOGY

Most read articles by the same author(s)

1 2 > >>