METHOD OF FORMING CLASSES OF SPATIALLY DISTRIBUTED OBJECTS FOR THE PURPOSE OF THEIR CLASSIFICATION AND RECOGNITION ON HIGH-RESOLUTION MULTISPECTRAL SPACE IMAGES
DOI:
https://doi.org/10.54668/2789-6323-2025-120-5-66-78Keywords:
Classification, Methodology, Objects, satellite image, types, vegetationAbstract
The paper discusses methods for automated classification of vegetation types and soil cover based on high-resolution aerospace data and geoinformation technologies. The study was conducted using IKONOS satellite imagery and includes the formation of training and test samples for 12 classes of vegetation and soils characteristic of the region under study. A statistical analysis of the spectral characteristics of clusters and an assessment of their representativeness and separability were performed. It was shown that the uneven distribution of training examples and the overlap of spectral features of individual classes reduce the stability of classification. To improve recognition quality, an approach based on combining spectrally similar classes and forming alternative classification schemes was proposed. The effectiveness of the method is evaluated using a maximum likelihood statistical classifier and a multilayer perceptron neural network classifier. The results confirm the feasibility of optimizing the structure of the classification scheme and the composition of training samples when solving aerospace environmental monitoring problems.
References
Якушев В.П., Захарян Ю.Г., Блохина С.Ю. Состояние и перспективы использования дистанционного зондирования Земли в сельском хозяйстве // Современные проблемы дистанционного зондирования Земли из космоса. - 2022. - Т. 19. - №1. - С. 287–294.
Нематзаде Р., Рзаева Г. Теоретические основы проектирования модели Геоинформационной системы для решения задач ДЗ по исследованию пространственно-распределенных объектов и ресурсов // Scientific Research International Scientific Journal. – 2024. – Vol. 4, Issue 10/99-105. e-ISSN: 2789-6919.
Груздов В.В., Колковский Ю.В., Криштопов А.В., Кудря А.И. Новые технологии дистанционного зондирования Земли из космоса. - Москва: ТЕХНОСФЕРА, 2018. – 482 с. ISBN 978-5-94836-502-2
Грекусис Дж. Методы и практика пространственного анализа. Описание, исследование и объяснение с использованием ГИС / пер. с анг. А.Н. Киселева. – Москва: ДМК Пресс, 2021.
Пузаченко М.Ю., Черненькова Т.В., Беляева Н.Г. Совместный анализ наземных и дистанционных данных при оценке структуры и состава лесов на примере западной части Подмосковья // Вестник СПбГУ. Науки о Земле. - 2020. - Т. 65. - Вып.2 - С.303-313
Ragimov R., Isgenderzade E., Ramazanov R., Samadov F., Jahidzada Sh. (2023). An innovative technology for aerospace monitoring of geotechnical systems based on the use of unmanned aerial vehicles (UAVs). Azerbaijan National Aerospace Agency 74th International Astronautical Congress Baku, Azerbaijan 2-6 October 2023
Ban H., Ahn J., Lee B. (2019). Assimilating MODIS data-derived minimum input data set and water stress factors into CERES-Maize model improves regional corn yield predictions. PLOS ONE, [e-journal] 14(2), e0211874. DOI: 10.1371/journal.pone.0211874.
Николаева О.В. Алгоритм обнаружения водных объектов на многоспектральных снимках // Современные проблемы дистанционного зондирования земли из космоса. - 2023. - Т. 20. - Вып. 3. - С 9-18.
Нематзаде Р.Г., Рзаева Г.З., Рагимов Р.М., Самедов Ф.Р. Выбор оптимального маршрута прокладки магистральных нефтегазопроводов на основе дешифрирования космических снимков высокого разрешения // Земля Беларуси. - 2025 (2). - С.53-58. https://belzeminfo.by/images/archive/2025/ZB_2025_2.pdf
Zhao H., Wang W., Zou X., Chen M., Pan Zh. (2025). Low-level and high-level features co-directed weakly supervised instance segmentation for optical remote sensing image interpretation. International Journal of Remote Sensing, Volume 46, Issue 13, P. 4959-4980.
PIMENTEL J.F.F., ARENAS R.D., SANTILLÁN Sh. M. Sh., APARICIO P.E.G., PIMENTEL D.E.F. (2022). Application Of Remote Sensing In Environmental Studies: A Theoretical Review. International Journal of Environmental, Sustainability, and Social Science. Vol. 3 No. 1.
Tan Y., Xu X., You H., Zhang Y., Chen M. (2025). Automated registration of forest point clouds from terrestrial and drone platforms using structural features. SPRS Journal of Photogrammetry and Remote Sensing. Volume 223. P. 28-45
Feigl J., Frey J., Seifert T., Koch B. (2025) Close-Range Remote Sensing of Forest Structure for Biodiversity Assessments: A Systematic Literature Review. Current Forestry Reports 11, 18. https://doi.org/10.1007/s40725-025-00251-x
Čorňák A., Delina R. (2022). Application of Remote Sensing Data in Crop Yield and Quality: Systematic Literature Review. Quality Innovation Prosperity. Vol. 26, No.3. p. 22-36. https://doi.org/10.12776/qip.v26i3.1708
Eze E., Girma A., Zenebe A., Kourouma J., Zenebe G. (2020). Exploring the possibilities of remote yield estimation using crop water requirements for area yield index insurance in a data-scarce dryland. Journal Of Arid Environments, [e-journal] 183, 104261. DOI: 10.1016/j.jaridenv.2020.104261.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Рашад Нематзаде, Гюнель Рзаева, Рауф Рагимов, Фарид Самедов

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




