БАЛАНС И КИНЕМАТИКА МАССЫ ЛЕДНИКА ЦЕНТРАЛЬНЫЙ ТУЙЫКСУ, СЕВЕРНЫЙ СКЛОН ИЛЕ АЛАТАУ
DOI:
https://doi.org/10.54668/2789-6323-2024-115-4-91-110Ключевые слова:
Северный Тянь-Шань, ледник Центральный Туйыксу, кинематика ледника, скорость движения льда, баланс массы ледникаАннотация
На основе прямых наблюдений на леднике Центральный Туйыксу, за период 2006…2023 гг. приведены расчеты компонентов внешнего и внутреннего массообмена и дано сравнение полученных значений за периоды 1958…1972 и 1977…1992. Для определения кинематических составляющих баланса массы использовались забуренные в лед рейки с геодезической привязкой на местности. За рассматриваемый период ледник отступил на 420 метров, баланс массы в среднем составил -0,54 м в.э. за весь период наблюдений, с 1958 г ледник отступил на 1190 м при среднем значении баланса массы за 1956…2023 гг. -0,42 м в.э. Годовой баланс массы в кинематической области питания (КОП) за период 2006…2023 составил +0,13 м, за этот же период вынос льда из этой области в кинематическую область абляции составил -1,24 м., при этом площадь КОП увеличилась на 17%, а кинематическая область абляции (КОА) сократилась на 46,3 %. Приток льда из КОП компенсировал потери в КОА в период 1977/78…1991/92 гг. только на половину (49,5 %), а в период с 2006/07 по 2022/23 уже на 75,9 %. Максимальные скорости движения льда на леднике Центральный Туйыксу 22…24 м/год наблюдались в период 1956…65 гг., уменьшились до 16 м/г в период 1977…1992 гг., а в период 2006…2023 гг. составляли 12,8 м/г.
Библиографические ссылки
Intergovernmental Panel on Climate Change (IPCC). (2022). *The Ocean and Cryosphere in a Changing Climate*. Cambridge University Press. https://doi.org/10.1017/9781009157964
Kotlyakov, V.M. (Ed.). (2006). *Glaciation of Northern and Central Eurasia in the Modern Epoch*. Institute of Geography of the Russian Academy of Sciences. Moscow: Nauka. ISBN 5-02-035344-2
Makarevich, K.G. (2004). Balance and kinematics of the mass of Tien Shan glaciers using the example of the TuyukSu glacier. *Hydrometeorology and Ecology*, *3*, 74-88.
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., & Cogley, J. G. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. *Nature*, *568*(7752), 382–386. https://doi.org/10.1038/s41586-019-1071-0
Kapitsa, V., Shahgedanova, M., Severskiy, I., Kasatkin, N., White, K., & Usmanova, Z. (2020). Assessment of Changes in Mass Balance of the Tuyuksu Group of Glaciers, Northern Tien Shan, Between 1958 and 2016 Using Ground-Based Observations and Pléiades Satellite Imagery. *Frontiers in Earth Science*, *8*. https://doi.org/10.3389/feart.2020.00259
Brun, F., Berthier, E., Wagnon, P., Kääb, A., & Treichler, D. (2017). A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. *Nature Geoscience*, *10*(9), 668–673. https://doi.org/10.1038/ngeo2999
Barandun, M., Huss, M., Usubaliev, R., Azisov, E., Berthier, E., Kääb, A., Bolch, T., & Hoelzle, M. (2018). Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations. *The Cryosphere*, *12*(6), 1899–1919. https://doi.org/10.5194/tc-12-1899-2018
Hoelzle, M., Barandun, M., Bolch, T., Fiddes, J., Gafurov, A., Muccione, V., Saks, T., & Shahgedanova, M. (2019). The status and role of the alpine cryosphere in Central Asia. In *The Aral Sea Basin* (pp. 100–121). Routledge. https://doi.org/10.4324/9780429436475-8
Barandun, M., Fiddes, J., Scherler, M., Mathys, T., Saks, T., Petrakov, D., & Hoelzle, M. (2020). The state and future of the cryosphere in Central Asia. *Water Security*, *11*, 100072. https://doi.org/10.1016/j.wasec.2020.100072
Makarevich, K.G. (2008). Tsentralny Tuyксуyskiy glacier from the International Geophysical Year to the present. In *Geographical problems of sustainable development: theory and practice: Proceedings of the International Scientific and Practical Conference dedicated to the 70th anniversary of the Institute of Geography of JSC CNZMO RK* (pp. 81-88). Almaty.
Severskiy, I.V., Vilesov, E.N., Makarevich, G.K., & Diyarova, K.Sh. (2008). Glaciological research in Kazakhstan: stages of development, current state, and prospects. In *Geographical problems of sustainable development: theory and practice: Proceedings of the International Scientific and Practical Conference dedicated to the 70th anniversary of the Institute of Geography of JSC CNZMO RK* (pp. 136-145). Almaty.
Vilesov, E.N., & Uvarov, V.N. (2001). *Evolution of Modern Glaciation of the Trans-Ili Alatau in the 20th Century*. Almaty: Kazak Universiteti.
Makarevich, K.G., & Kasatkin, N.E. (2008). Half-century studies of the mass balance of the Central TuyukSu glacier in the Trans-Ili Alatau. In *Geographical problems of sustainable development: theory and practice: Proceedings of the International Scientific and Practical Conference dedicated to the 70th anniversary of the Institute of Geography of JSC CNZMO RK* (pp. 99-111). Almaty.
Vilesov, E.N. (2016). *Dynamics and current state of glaciation in the mountains of Kazakhstan*. Almaty.
Severskiy, I., Vilesov, E., Armstrong, R., Kokarev, A., Kogutenko, L., Usmanova, Z., Morozova, V., & Raup, B. (2016). Changes in glaciation of the Balkhash–Alakol basin, central Asia, over recent decades. *Annals of Glaciology*, *57*(71), 382–394. https://doi.org/10.3189/2016AoG71A575
Stocker-Waldhuber, M., Fischer, A., Helfricht, K., & Kuhn, M. (2019). Long-term records of glacier surface velocities in the Ötztal Alps (Austria). *Earth System Science Data*, *11*(2), 705–715. https://doi.org/10.5194/essd-11-705-2019
Makarevich, K.G. (2007). *Methodological aspects of research on mass balance and fluctuations of mountain glaciers. Methodological manual*. Almaty.
Vincent, C., Le Meur, E., Six, D., Funk, M., Hoelzle, M., & Preunkert, S. (2007). Very high‐elevation Mont Blanc glaciated areas not affected by the 20th century climate change. *Journal of Geophysical Research: Atmospheres*, *112*(D9). https://doi.org/10.1029/2006JD007407
Réveillet, M., Vincent, C., Six, D., Rabatel, A., Sanchez, O., Piard, L., & Laarman, O. (2021). Spatio-temporal variability of surface mass balance in the accumulation zone of the Mer de Glace, French Alps, from multitemporal terrestrial LiDAR measurements. *Journal of Glaciology*, *67*(261), 137–146. https://doi.org/10.1017/jog.2020.92
Jourdain, B., Vincent, C., Réveillet, M., Rabatel, A., Brun, F., Six, D., Laarman, O., Piard, L., Ginot, P., Sanchez, O., & Berthier, E. (2023). A method to estimate surface mass-balance in glacier accumulation areas based on digital elevation models and submergence velocities. *Journal of Glaciology*, *69*(277), 1403–1418. https://doi.org/10.1017/jog.2023.29
Vincent, C., Cusicanqui, D., Jourdain, B., Laarman, O., Six, D., Gilbert, A., Walpersdorf, A., Rabatel, A., Piard, L., Gimbert, F., Gagliardini, O., Peyaud, V., Arnaud, L., Thibert, E., Brun, F., & Nanni, U. (2021). Geodetic point surface mass balances: a new approach to determine point surface mass balances on glaciers from remote sensing measurements. *The Cryosphere*, *15*(3), 1259–1276. https://doi.org/10.5194/tc-15-1259-2021
Pelto, B. M., & Menounos, B. (2021). Surface Mass-Balance Gradients From Elevation and Ice Flux Data in the Columbia Basin, Canada. *Frontiers in Earth Science*, *9*. https://doi.org/10.3389/feart.2021.675681
Belart, J. M. C., Berthier, E., Magnússon, E., Anderson, L. S., Pálsson, F., Thorsteinsson, T., Howat, I. M., Aðalgeirsdóttir, G., Jóhannesson, T., & Jarosch, A. H. (2017). Winter mass balance of Drangajökull ice cap (NW Iceland) derived from satellite submeter stereo images. *The Cryosphere*, *11*(3), 1501–1517. https://doi.org/10.5194/tc-11-1501-2017
Schöber, J., Schneider, K., Helfricht, K., Schattan, P., Achleitner, S., Schöberl, F., & Kirnbauer, R. (2014). Snow cover characteristics in a glacierized catchment in the Tyrolean Alps - Improved spatially distributed modelling by usage of Lidar data. *Journal of Hydrology*, *519*, 3492–3510. https://doi.org/10.1016/j.jhydrol.2013.12.054
Sold, L., Huss, M., Hoelzle, M., Andereggen, H., Joerg, P. C., & Zemp, M. (2013). Methodological approaches to infer end-of-winter snow distribution on alpine glaciers. *Journal of Glaciology*, *59*(218), 1047–1059. https://doi.org/10.3189/2013JoG13J015
Vincent, C., Vallon, M., Pinglot, J. F., Funk, M., & Reynaud, L. (1997). Snow accumulation and ice flow at Dôme du Goûter (4300 m), Mont Blanc, French Alps. *Journal of Glaciology*, *43*(145), 513–521. https://doi.org/10.3189/S0022143000035127
Meier, M. F., & Tangborn, W. V. (1965). Net Budget and Flow of South Cascade Glacier, Washington. *Journal of Glaciology*, *5*(41), 547–566. https://doi.org/10.3189/S0022143000018608
Palgov, N.N. (1962). Runoff of glaciers of Kazakhstan. *Glaciological research during the IGY. Trans-Ili and Dzungarian Alatau*, *2*.
Makarevich, K.G. (Ed.). (1969). *Glaciation of the Trans-Ili Alatau*. Moscow: Nauka.
Cherkasov, P. A., Ahmetova, G. S., & Hastenrath, S. (1996). Ice flow and mass continuity of Shumsky Glacier in the Djungarski Alatau Range of Kazakhstan, Central Asia. Journal of Geophysical Research: Atmospheres, 101(D8), 12913–12920. https://doi. org/10.1029/96JD00615
Ahmetova G.S., Cherkasov P.A., & Hastenrath S. (1998). Regime of Muravlev Glacier in the Djungarskiy Alatau Range of Kazakhstan, Central Asia. Zeitschrift Fyer Gletscherkunde Und Glazialgeologie, 34(1), 37–46.
Zhang, Z., Xu, Y., Liu, S., Ding, J., & Zhao, J. (2023). Seasonal variations in glacier velocity in the High Mountain Asia region during 2015–2020. Journal of Arid Land, 15(6), 637–648. https:// doi.org/10.1007/s40333-023-0016-5
Van Wyk de Vries, M., & Wickert, A. D. (2021). Glacier Image Velocimetry: an open-source toolbox for easy and rapid calculation of high-resolution glacier velocity fields. The Cryosphere, 15(4), 2115–2132. https://doi.org/10.5194/tc-15-2115-2021
Millan, R., Mouginot, J., Rabatel, A., Jeong, S., Cusicanqui, D., Derkacheva, A., & Chekki, M. (2019). Mapping Surface Flow Velocity of Glaciers at Regional Scale Using a Multiple Sensors Approach. Remote Sensing, 11(21), 2498. https://doi.org/10.3390/ rs11212498
Yang, R., Hock, R., Kang, S., Guo, W., Shangguan, D., Jiang, Z., & Zhang, Q. (2022). Glacier Surface Speed Variations on the Kenai Peninsula, Alaska, 2014–2019. Journal of Geophysical Research: Earth Surface, 127(3). https://doi.org/10.1029/2022JF006599
Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow, P. W., Berthier, E., Vincent, C., Wagnon, P., & Trouvé, E. (2019). Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nature Geoscience, 12(1), 22–27. https://doi.org/10.1038/s41561-018-0271-9
Østrem, G., & Brugman, M. (1991). Glacier mass-balance measurements: a manual for field and office work.
Kokarev A.L., Kapitsa V.P., Bolch T., Severskiy I.V., Kasatkin N.Е., Shahgedanova М., & Usmanova Z.S. (2022). The results of geodetic measurements of the mass balance of some glaciers in the Zailiyskiy Alatau (Trans-Ili Alatau). Journal “Ice and Snow,” 62(4), 527–538. https://doi.org/10.31857/S2076673422040149
Li, H., Wang, P., Li, Z., Jin, S., Xu, C., Liu, S., Zhang, Z., & Xu, L. (2022). An application of three different field methods to monitor changes in Urumqi Glacier No. 1, Chinese Tien Shan, during 2012– 18. Journal of Glaciology, 68(267), 41–53. https://doi.org/10.1017/ jog.2021.71
Cao, B., Pan, B., Guan, W., Wang, J., & Wen, Z. (2017). Changes in ice volume of the Ningchan No.1 Glacier, China, from 1972 to 2014, as derived from in situ measurements. Journal of Glaciology, 63(242), 1025–1033. https://doi.org/10.1017/jog.2017.70
Shahgedanova, M., Nosenko, G., Bushueva, I., & Ivanov, M. (2012). Changes in area and geodetic mass balance of small glaciers, Polar Urals, Russia, 1950-2008. Journal of Glaciology, 58(211), 953–964. https://doi.org/10.3189/2012JoG11J233
Макаревич А.К. О кинематике поверхности горного долинного ледника // Режим ледников и снежных лавин Казахстана. – Алма-Ата: Изд-во «Наука» КазССР, – 1979. – С.120-124.
Макаревич К.Г., Макаревич А.К. Опыт прямых определений скорости поверхности ледника // Режим ледников и снежных лавин Казахстана. – Алма-Ата: Изд-во «Наука» КазССР, – 1979. – С.125-131.
Kotlyakov, V. M., Chernova, L. P., Muraviev, A. Ya., Khromova, T. E., & Zverkova, N. M. (2017). Changes of mountain glaciers in the Southern and Northern Hemispheres over the past 160 years. Ice and Snow, 57(4), 453–467. https://doi.org/10.15356/2076-6734- 2017-4-453-467
Zemp, M., Gärtner-Roer, I., Nussbaumer, S. U., Welty, E. Z., Dussaillant, I., & Bannwart, J. (2023). WGMS 2023. Global Glacier Change Bulletin No. 5 (2020–2021). (pp. 1–134). ISC(WDS)/ IUGG(IACS)/UNEP/UNESCO/ WMO, World Glacier Monitoring Service.
Северский, И., Муканова, Б., Капица, В., Татькова, М., Кокарев, А. Шестерова, И. Изменение оледенения северного склона Иле Алатау за семидесятилетний период // Вестник КазНУ им. Аль-Фараби. Сер. географическая. №73 (2). – 2024. – С. 59–71.
Shahgedanova, M., Afzal, M., Severskiy, I., Usmanova, Z., Saidaliyeva, Z., Kapitsa, V., Kasatkin, N., & Dolgikh, S. (2018). Changes in the mountain river discharge in the northern Tien Shan since the mid-20th Century: Results from the analysis of a homogeneous daily streamflow data set from seven catchments. Journal of Hydrology, 564, 1133–1152. https://doi.org/10.1016/j. jhydrol.2018.08.001
Van Tricht, L., Huybrechts, P., Van Breedam, J., Fürst, J. J., Rybak, O., Satylkanov, R., Ermenbaiev, B., Popovnin, V., Neyns, R., Paice, C. M., & Malz, P. (2021). Measuring and inferring the ice thickness distribution of four glaciers in the Tien Shan, Kyrgyzstan. Journal of Glaciology, 67(262), 269–286. https://doi.org/10.1017/ jog.2020.104
Lambrecht, A., Mayer, C., Bohleber, P., & Aizen, V. (2020). High altitude accumulation and preserved climate information in the western Pamir, observations from the Fedchenko Glacier accumulation basin. Journal of Glaciology, 66(256), 219–230. https://doi.org/10.1017/jog.2019.97
Nosenko G.A., Lavrentiev I.I., Glazovskii A.F., Kazatkin N.E., & A.L. Kokarev. (2016). The polythermal structure of Central Tuyuksu glacier. Kriosfera Zemli, XX(4), 105–115. https://doi. org/10.21782/KZ1560-7496-2016-4(105-115)
Lavrentiev, I., Machguth H., & Kronenberg M. (2018). New data on ice thickness and internal structure of glaciers in TienShan and Pamir-Alay (Kyrgyzstan). Practical Geography and XXI Century Challenges. International Geographical Union Thematic Conference Dedicated to the Centennial of the Institute of Geography of the Russian Academy of Sciences, 80–80.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., & Pandit, A. (2019). A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, 12(3), 168–173. https://doi.org/10.1038/s41561-019-0300-3
Barandun, M., Pohl, E., Naegeli, K., McNabb, R., Huss, M., Berthier, E., Saks, T., & Hoelzle, M. (2021). Hot Spots of Glacier Mass Balance Variability in Central Asia. Geophysical Research Letters, 48(11). https://doi.org/10.1029/2020GL092084
Azisov, E., Hoelzle, M., Vorogushyn, S., Saks, T., Usubaliev, R., Esenaman uulu, M., & Barandun, M. (2022). Reconstructed Centennial Mass Balance Change for Golubin Glacier, Northern Tien Shan. Atmosphere, 13(6), 954. https://doi.org/10.3390/ atmos13060954
Popovnin V.V., Gubanov A.S., Satylkanov R.A., & Ermenbayev B.O. (2021). Mass balance of the Sary-Tor Glacier reproduced from meteorological data. . Ice and Snow, 61(1), 58–74. https://doi. org/10.31857/S2076673421010071
Kenzhebaev, R., Barandun, M., Kronenberg, M., Chen, Y., Usubaliev, R., & Hoelzle, M. (2017). Mass balance observations and reconstruction for Batysh Sook Glacier, Tien Shan, from 2004 to 2016. Cold Regions Science and Technology, 135, 76–89. https:// doi.org/10.1016/j.coldregions.2016.12.007
Макаревич К.Г., Касаткин Н.Е. Полувековые исследования баланса массы и морфологических изменений Центрального Туюксуйского ледника в Заилийском Алатау. // Лед и снег. – 2011. – №1. – С. 36-44.
Brun, F., Wagnon, P., Berthier, E., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P. D. A., Vincent, C., Reverchon, C., Shrestha, D., & Arnaud, Y. (2018). Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya. The Cryosphere, 12(11), 3439–3457. https://doi.org/10.5194/tc-12-3439-2018
Sakai, A., Fujita, K., Duan, K., Pu, J., Nakawo, M., & Yao, T. (2006). Five decades of shrinkage of July 1st glacier, Qilian Shan, China. Journal of Glaciology, 52(176), 11–16. https://doi. org/10.3189/172756506781828836
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Copyright (c) 2025 Гидрометеорология и экология
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.